SPFA算法优化
前言
\(SPFA\) 通常在稀疏图中运行效率高于 \(Dijkstra\) ,但是也容易被卡。
普通的 \(SPFA\) 时间复杂度为 \(O(km)\) ,其中 \(k\) 是一条边松弛其端点点的次数,是一个较小的常数。
但是对于特殊构造的图中也会退化到 \(O(nm)\) ,这就与 \(Bellman-Ford\) 一样。
对此部分情况,可使用 \(SLF\) 与 \(LLL\) 优化 \(SPFA\) 。
C++代码
#include <queue>
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
#define INF 0x3f3f3f3f
void Quick_Read(int &N) {
N = 0;
int op = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-')
op = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
N = (N << 1) + (N << 3) + (c ^ 48);
c = getchar();
}
N *= op;
}
const int MAXN = 1e6 + 5;
struct Node {
int to, dist;
Node() {}
Node(int T, int D) {
to = T;
dist = D;
}
};
vector<Node> v[MAXN];
deque<int> q;
int dis[MAXN];
bool inque[MAXN];
int n, m, s;
void Write() {
for(int i = 1; i <= n; i++)
if(dis[i] != INF)
printf("%d ", dis[i]);
else
printf("2147483647 ");
}
void SPFA() {
int iqn = 1, fis = 0;
memset(dis, 0x3f, sizeof(dis));
dis[s] = 0;
memset(inque, 0, sizeof(inque));
inque[s] = true;
q.push_back(s);
while(!q.empty()) {
int now = q.front(); q.pop_front();
inque[now] = false;
fis -= dis[now];
iqn--;
int SIZ= v[now].size();
for(int i = 0; i < SIZ; i++) {
int next = v[now][i].to;
if(dis[next] > dis[now] + v[now][i].dist) {
dis[next] = dis[now] + v[now][i].dist;
if(!inque[next]) {
inque[next] = true;
if(q.empty() || dis[next] > dis[q.front()] || dis[next] * iqn <= fis)
q.push_back(next);
else
q.push_front(next);
fis += dis[dis[next] + v[now][i].dist];
iqn++;
}
}
}
}
}
void Read() {
int A, B, C;
Quick_Read(n);
Quick_Read(m);
Quick_Read(s);
for(int i = 1; i <= m; i++) {
Quick_Read(A);
Quick_Read(B);
Quick_Read(C);
v[A].push_back(Node(B, C));
}
}
int main() {
Read();
SPFA();
Write();
return 0;
}
但上述优化也有缺陷,并不适用与所有图。
\(LLL\) 优化常见卡掉的方法很简单,向 \(1\) 连接一条权值巨大的边,这样 \(LLL\) 也无能为力,之前做的松弛等于白费。
\(SLF\) 使用链套菊花,可以轻松卡掉。
若全部边权正负性相同,还是使用 \(Dijkstra\) 算法,其稳定性是 \(SPFA\) 不具有的。
SPFA算法优化的更多相关文章
- 【最短路径】 SPFA算法优化
首先先明确一个问题,SPFA是什么?(不会看什么看,一边学去,传送门),SPFA是bellman-ford的队列优化版本,只有在国内才流行SPFA这个名字,大多数人就只知道SPFA就是一个顶尖的高效算 ...
- 【最短路径】 SPFA算法
上一期介绍到了SPFA算法,只是一笔带过,这一期让我们详细的介绍一下SPFA. 1 SPFA原理介绍 SPFA算法和dijkstra算法特别像,总感觉自己讲的不行,同学说我的博客很辣鸡,推荐一个视频讲 ...
- SPFA算法 - Bellman-ford算法的进一步优化
2017-07-27 22:18:11 writer:pprp SPFA算法实质与Bellman-Ford算法的实质一样,每次都要去更新最短路径的估计值. 优化:只有那些在前一遍松弛中改变了距离点的 ...
- 关于SPFA算法的优化方式
关于SPFA算法的优化方式 这篇随笔讲解信息学奥林匹克竞赛中图论部分的求最短路算法SPFA的两种优化方式.学习这两种优化算法需要有SPFA朴素算法的学习经验.在本随笔中SPFA朴素算法的相关知识将不予 ...
- SPFA算法(SLF优化)2022.7.8更新
SPFA可能会被卡掉,能用dijkstra就别用SPFA,代码较长,但我已尽力做到解释,请耐心看下去,存储为邻接表存储. #include<bits/stdc++.h> #define i ...
- 最短路径问题的Dijkstra和SPFA算法总结
Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...
- SPFA算法
SPFA算法 一.算法简介 SPFA(Shortest Path Faster Algorithm)算法是求单源最短路径的一种算法,它是Bellman-ford的队列优化,它是一种十分高效的最短路算法 ...
- SPFA算法学习笔记
一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...
- 最短路径--SPFA 算法
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...
随机推荐
- 《GNU_makefile》——第八章 内嵌函数
函数可以带参数,函数的展开方式和变量展开一样,函数的返回结果替换调用函数的文本. 1.函数的调用 $(FUNCTION ARGUMENTS) 或者: ${FUNCTION ARGUMENTS} FUN ...
- ceph单机多mon的实现
ceph默认情况下是以主机名来作为mon的识别的,所以这个情况下用部署工具是无法创建多个mon的,这个地方使用手动的方式可以很方便的创建多个mon 1.创建mon的数据存储目录 mkdir /var/ ...
- oracle的三种连接方式
1.通过sid jdbc:oracle:thin:@host:port:SID Example: jdbc:oracle:thin:@localhost:1521:sid_test 2.通过servi ...
- Oracle 集合类型
集合类型 1. 使用条件: a. 单行单列的数据,使用标量变量 . b. 单行多列数据,使用记录 [ 详细讲解请见: 点击打开链接 ] c. 单列多行数据,使用集合 *集合:类似于编程语言中 ...
- C语言设计模式(命令模式)
#define ARRAY_SIZE(a) (sizeof(a)/sizeof(a[0])) typedef int (*parse_func)(const char *data,size_t len ...
- SMB远程代码执行漏洞(CVE-2020-0796)分析、验证及加固
这几天有点忙,CVE-2020-0796出来了,没静下心来关注一下,显得太不尊重这个漏洞了,今天周末,关注一下,水一篇. 一.漏洞描述 漏洞公告显示,SMB 3.1.1协议 ...
- CorelDRAW 里面如何将文字调整成半透明的颜色
早在几年前,平面设计师在做设计时会遇到关于印刷的难题,那就是为了降低印刷成本,必须减少他们的颜色数量.随着印刷方法的进步,特别是数字出版物的兴起,我们生活在一个主要是通过屏幕观看图形的时代,一个可以显 ...
- zabbix 监控文件夹
安装inotify wget http://github.com/downloads/rvoicilas/inotify-tools/inotify-tools-3.14.tar.gz tar -zx ...
- sentinel快速入门
转载:https://blog.csdn.net/noaman_wgs/article/details/103328793 https://github.com/alibaba/Sentinel/wi ...
- 02-Python里字符串的常用操作方法--split()函数和join()函数
1.split() --分割,返回一个列表, 会丢失分割字符 实例: my_str = 'you and me and he' list01 = my_str.split('and') list02 ...