SG函数:

给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移 动者判负。事实上,这个游戏可以认为是所有Impartial Combinatorial Games的抽象模型。也就是说,任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下 面我们就在有向无环图的顶点上定义Sprague-Garundy函数。首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

在我的理解中,sg函数就是一个对有向无环图dfs的过程,在处理nim博弈时,多个石堆可以看成多个sg函数值的异或。

例题:

POJ2311 Cutting Game

典型的sg博弈,找后继状态。题意是给出一个n*m的纸片,每次剪成两部分,谁先剪到1*1就胜利。这就是一个找后继的题目,每次剪成的两部分就是前一状态的后继,只要将两个部分的sg值异或起来就是前一状态的sg值。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int sg[201][201];
int dfs(int a,int b)//sg函数的一般写法
{
if(sg[a][b]>=0)
{
return sg[a][b];
}
int i,map[201],r;//map标记数组一定要在dfs内部定义,不然会出现错误
mem(map,0);
FOR(2,(a/2),i)
{
r=dfs(i,b)^dfs(a-i,b);//后继的异或得到前一状态的sg值
map[r]=1;
}
FOR(2,(b/2),i)
{
r=dfs(a,i)^dfs(a,b-i);
map[r]=1;
}
FOR(0,200,i)
{
if(map[i]==0)
{
return sg[a][b]=i;//mex公式的应用
}
}
}
int main()
{
int n,m,sum;
mem(sg,-1);
while(scanf("%d%d",&n,&m)!=EOF)
{
sum=dfs(n,m);
if(sum>0)
{
printf("WIN\n");
}
else
{
printf("LOSE\n");
}
}
return 0;
}

POJ2425 A Chess Game

题意是给你一个拓扑图,一个起点上的n个棋子,两个玩家交替移动棋子,谁无法移动谁输,典型的sg函数运用。套用模板就行了。此题数据量较大,加入了输入优化后刷到了第一版第四名,nice!

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int vis[1001][1001],sg[1001];
int n;
int dfs(int x)//典型的sg过程
{
int i;
if(sg[x]!=-1)
{
return sg[x];
}
int f[1001];
mem(f,0);
For(0,n,i)
{
if(vis[x][i]!=-1)
{
f[dfs(i)]=1;
}
}
i=0;
while(f[i])
{
i++;
}
return sg[x]=i;
}
int main()
{
int i,j,k,t,x,p,sum;
while(scanf("%d",&n)!=EOF)
{
mem(vis,-1);
mem(sg,-1);
For(0,n,i)
{
RD(k);
if(k==0)
{
sg[i]=0;
}
For(0,k,j)
{
RD(t);
vis[i][t]=1;//建图
}
}
while(1)
{
RD(x);
if(x==0)
{
break;
}
sum=0;
For(0,x,i)
{
RD(p);
sum^=dfs(p);
}
if(sum!=0)
{
printf("WIN\n");
}
else
{
printf("LOSE\n");
}
}
}
return 0;
}

POJ2068 Nim

题意是圆桌上有2n个人,奇数一队,偶数一队,每个人都有一个拿走棋子的最高限额,问你最后1对能否获胜。

还是用强大的sg函数过的,记录下每个状态的sg。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#include <queue>
#include<map>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int n,s,m[22],sg[22][8200],sum;
int dfs(int x,int y)
{
if(sg[x][y]!=-1)
{
return sg[x][y];
}
int i,j;
FOR(1,m[x],i)
{
if(y-i<0)
{
break;
}
if(x+1>=2*n)
{
j=0;
}
else
{
j=x+1;
}
if(dfs(j,y-i)==0)
{
return sg[x][y]=1;
}
}
return sg[x][y]=0;
}
int main()
{
int i;
while(1)
{
RD(n);
if(n==0)
{
break;
}
RD(s);
For(0,2*n,i)
{
RD(m[i]);
}
mem(sg,-1);
FOR(0,2*n,i)
{
sg[i][0]=1;
}
sum=dfs(0,s);
if(sum==0)
{
printf("0\n");
}
else
{
printf("1\n");
}
}
return 0;
}

POJ3537 Crosses and Crosses

题意:给出一个1*n的矩形,上面有n个方格,现有两人分别在上面画×,谁先能画出三个×相连就赢了。这就是一个sg函数的母问题转化为子问题的题目,由于在第x位置画了×后,则就转变成(x-3)个格子画×和(n-x-2)个格子画×。。。这就能不断的分解下去,最后将所有sg值异或起来就是正解了。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#include <queue>
#include<map>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int sg[2001];
int dfs(int x)
{
if(x<0)
{
return 0;
}
if(sg[x]>=0)
{
return sg[x];
}
int i,y;
bool v[2001]={false};
FOR(1,x,i)
{
y=dfs(i-3)^dfs(x-i-2);//找后继(经典)
v[y]=true;
}
for(i=0;;i++)
{
if(v[i]==false)
{
return sg[x]=i;
}
}
}
int main()
{
int n,sum;
mem(sg,-1);
while(scanf("%d",&n)!=EOF)
{
sum=dfs(n);
if(sum)
{
printf("1\n");
}
else
{
printf("2\n");
}
}
return 0;
}

POJ2599 A funny game

记忆化搜索,这题的博弈味道不浓,更多的是搜索。题意是给一个图,两人轮流移动,走过的节点不能再走。水题,dfs+标记就行。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define FOR(a,b,i) for(i=a;i<=b;++i)
#define For(a,b,i) for(i=a;i<b;++i)
#define N 1000000007
using namespace std;
inline void RD(int &ret)
{
char c;
do
{
c=getchar();
}
while(c<'0'||c>'9');
ret=c-'0';
while((c=getchar())>='0'&&c<='9')
{
ret=ret*10+(c-'0');
}
}
inline void OT(int a)
{
if(a>=10)
{
OT(a/10);
}
putchar(a%10+'0');
}
int n,v[1001][1001],vis[1001];
int dfs(int x)
{
int i;
FOR(1,n,i)
{
vis[x]=1;
if(v[i][x]&&!vis[i])
{
if(!dfs(i))
{
vis[x]=0;
return i;
}
}
vis[x]=0;
}
return 0;
}
int main()
{
int m,i,a,b;
while(scanf("%d%d",&n,&m)!=EOF)
{
mem(v,0);
mem(vis,0);
FOR(1,n-1,i)
{
RD(a);
RD(b);
v[a][b]=v[b][a]=1;
}
i=dfs(m);
if(i!=0)
{
printf("First player wins flying to airport %d\n",i);
}
else
{
printf("First player loses\n");
}
}
return 0;
}

博弈问题之SG函数博弈小结的更多相关文章

  1. 博弈论 | 详解搞定组合博弈问题的SG函数

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天这篇是算法与数据结构专题的第27篇文章,我们继续深入博弈论问题.今天我们要介绍博弈论当中非常重要的一个定理和函数,通过它我们可以解决许多 ...

  2. 【转】博弈问题及SG函数(真的很经典)

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  3. (转)博弈问题与SG函数

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  4. 转载--博弈问题及SG函数(真的很经典)

    博弈问题若你想仔细学习博弈论,我强烈推荐加利福尼亚大学的Thomas S. Ferguson教授精心撰写并免费提供的这份教材,它使我受益太多.(如果你的英文水平不足以阅读它,我只能说,恐怕你还没到需要 ...

  5. SG函数博弈——poj2311

    关于SG函数的博弈 首先定义必败态 x : SG[x]=0 设任意一个状态y,到所有y能到达的状态连一条边,令这些后继为z y : SG[y]=mex(SG[z]) SG[y]==0 : y就是必败态 ...

  6. hdu 1847 博弈基础题 SG函数 或者规律2种方法

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  7. HDU1536&&POJ2960 S-Nim(SG函数博弈)

    S-Nim Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  8. Nim游戏与SG函数 ——博弈论小结

    写这篇博客之前,花了许久时间来搞这个SG函数,倒是各路大神的论文看的多,却到底没几个看懂的.还好网上一些大牛博客还是性价比相当高的,多少理解了些,也自己通过做一些题加深了下了解. 既然是博弈,经典的N ...

  9. HDU 5724 Chess (状态压缩sg函数博弈) 2016杭电多校联合第一场

    题目:传送门. 题意:有n行,每行最多20个棋子,对于一个棋子来说,如果他右面没有棋子,可以移动到他右面:如果有棋子,就跳过这些棋子移动到后面的空格,不能移动的人输. 题解:状态压缩博弈,对于一行2^ ...

随机推荐

  1. poj3070

    矩阵第一题.也是矩阵的模板题.下面是模板. 比较重要的是,矩阵的乘法会有很多很神奇的用法.比如如下几个网站所讲. http://www.matrix67.com/blog/archives/276  ...

  2. .Net之路(十三)数据库导出到EXCEL

    .NET中导出到Office文档(word,excel)有我理解的两种方法.一种是将导出的文件存放在server某个目录以下,利用response输出到浏览器地址栏,直接打开:还有直接利用javasc ...

  3. Android 开机动画源码分析

    Android系统在启动SystemServer进程时,通过两个阶段来启动系统所有服务,在第一阶段启动本地服务,如SurfaceFlinger,SensorService等,在第二阶段则启动一系列的J ...

  4. sqlserver 分页查询总结

    sqlserver2008不支持关键字limit ,所以它的分页sql查询语句将不能用mysql的方式进行,幸好sqlserver2008提供了top,rownumber等关键字,这样就能通过这几个关 ...

  5. 使用Sphinx生成静态网页

    转载来自 http://www.ibm.com/developerworks/cn/opensource/os-sphinx-documentation/ 简介 Sphinx 是一种工具,它允许开发人 ...

  6. 转:javascript面向对象编程

    作者: 阮一峰 日期: 2010年5月17日 学习Javascript,最难的地方是什么? 我觉得,Object(对象)最难.因为Javascript的Object模型很独特,和其他语言都不一样,初学 ...

  7. 一步一步重写 CodeIgniter 框架 (10) —— 使用 CodeIgniter 类库(续)

    上一节简单实现了 CI 的类库扩展模型,所以 _ci_load_class 和 _ci_init_class 写的不是很完备.根据上节课的分析,当 system/libraries 目录下存在 Ema ...

  8. Android PopupWindow显示位置和显示大小

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveGlhb3l1YW41MTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  9. 查看死锁原因 /data/anr/traces.txt

    Android ANR这个错误大家并不陌生,但是从Android 2.2开始出错的ANR信息会自动上传给Google进行系统分析改进,当然了你的应用ANR错误其实保存在一个文件中,在/data/anr ...

  10. 分布式文件系统GlusterFS

    转自于:http://www.cnblogs.com/zitjubiz/archive/2012/11/30/Distributed_File_System_glusterFS.html Gluste ...