dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正确粉刷的格子数 , 状态的转移很显然 , w[ i ][ j ] 表示 第 i 行使用 j 次粉刷机会能正确粉刷的格子数.

接下来考虑 w , 对于每一行 : DP[ i ][ j ] = max( DP[ k ][ j - 1 ] + sum( k + 1 , i ) ) ( 0 <= k < i ) sum( l , r ) 表示从区间[ l , r ] 的颜色相同的格子的个数的较大值( 因为两种颜色 ) , 那么 w[ i ][ j ] = 对第 i 行做的 DP[ m ][ j ] .

---------------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<iostream>
 
#define rep( i , n ) for( int i = 0 ;  i < n ; ++i )
#define clr( x , c ) memset( x , c , sizeof( x ) )
#define Rep( i , n ) for( int i = 1 ; i <= n ; ++i )
 
using namespace std;
 
const int maxn = 50 + 5;
const int maxt = 2500 + 5;
 
int sum[ maxn ][ maxn ];
int n , m , T;
int w[ maxn ][ maxt ];
int D[ maxn ][ maxt ];
int d[ maxn ][ maxt ];
 
int cur;
 
int Dp( int x , int k ) {
int &ans = D[ x ][ k ];
if( ans != -1 )
   return ans;
   
ans = 0;
rep( i , x ) {
int t = sum[ cur ][ x ] - sum[ cur ][ i ];
   ans = max( ans , Dp( i , k - 1 ) + max( t , x - i - t ) );
   
}
return ans;
}
 
void init() {
clr( w , 0 );
Rep( i , n ) {
clr( D , -1 );
rep( j , T + 1 ) 
   D[ 0 ][ j ] = 0;
Rep( j , m ) 
   D[ j ][ 0 ] = 0;
   Rep( j , T )
   w[ cur = i ][ j ] = Dp( m , j );
}
}
int dp( int x , int k ) {
int &ans = d[ x ][ k ];
if( ans != -1 ) 
   return ans;
ans = 0;
for( int i = 0 ; i <= k ; i++ )
   ans = max( ans , dp( x - 1 , k - i ) + w[ x ][ i ] );
return ans;
}
 
int main() {
freopen( "test.in" , "r" , stdin );
cin >> n >> m >> T;
Rep( i , n ) {
sum[ i ][ 0 ] = 0;
   Rep( j , m ) {
   
    char c = getchar();
   
    while( ! isdigit( c ) ) c = getchar();
   
    sum[ i ][ j ] += sum[ i ][ j - 1 ] + c - '0';
   
   }
   
}
init();
clr( d , -1 );
memcpy( d[ 0 ] , w[ 0 ] , sizeof d[ 0 ] );
cout << dp( n , T ) << "\n";
return 0;
}

---------------------------------------------------------------------------------------------

1296: [SCOI2009]粉刷匠

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1056  Solved: 620
[Submit][Status][Discuss]

Description

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。

Output

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

Sample Input

3 6 3
111111
000000
001100

Sample Output

16

HINT

30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。
100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。

Source

BZOJ 1296: [SCOI2009]粉刷匠( dp )的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  2. bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】

    参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...

  3. bzoj 1296: [SCOI2009]粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  4. bzoj 1296: [SCOI2009]粉刷匠 动态规划

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  5. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  6. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  7. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  8. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  9. 1296: [SCOI2009]粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

随机推荐

  1. 记录一下八款开源 Android 游戏引擎

    记录一下八款开源 Android 游戏引擎 虽然android学了点点,然后现在又没学了(我为啥这么没有恒心呢大哭).以后有时间还是要继续学android的,一定要啊!虽然现在没学android游戏编 ...

  2. Day3_字符串操作与正则表达式

    本节课的主要内容有:字符串的格式化.连接与分割.比较.匹配和替换.使用正则表达式 字符串的格式化: 去除空格:trim() 使用html格式化:nl2br()  替换‘\n’为‘<br /> ...

  3. Flash,EEPROM差别

    flash是用来存储代码的,在执行过程中不能改:EEPROM是用来保存用户数据,执行过程中能够改变,比方一个时钟的闹铃时间初始化设定为12:00,后来在执行中改为6:00,这是保存在EEPROM里,不 ...

  4. 算法精解(C语言描述) 第5章 读书笔记

    第5章 5.1 单链表 /* -------------------------------- list.h -------------------------------- */ #ifndef L ...

  5. javascript模块化开发编程

    随着网站的不断迭代更新,js代码越来越多,那么问题来了 代码比较乱 命名出现冲突 文件依赖比较繁杂 为了解决以上问题,模块化开发出现了 1.一个简单的demo,维护和扩展模块 模块的维护和扩展一定要遵 ...

  6. Activity中异步操作showDialog异常解决方法:判断Ay是否结束

    Android – Displaying Dialogs From Background Threads 判断一下Activity是否在finishing就好了,否则万一Activity销毁了,这个D ...

  7. asp.net验证码及怎么获取里面的数值(整合)

    一.ASP.Net的验证码的作用 对于一个预防攻击的web表单来讲,验证码通常是一个常见的措施.因为如果对于一些public区域的页面内容来讲,譬如一个登录表单,如果没有必要的安全措施,很可能遭到模拟 ...

  8. CocoaPods 安装和使用

    CocoaPods的安装 >1. 打开终端, 输入 gem sources -remove https://rubygems.org/ >2. 再输入 gem sources -a htt ...

  9. SQL server与Oracle触发器的创建与使用

    SQL Server 1创建触发器 GO BEGIN IF (object_id('WMY', 'tr') is not null) DROP trigger WMY END; GO CREATE T ...

  10. AngularJS ng-class用法

    mark from https://my.oschina.net/gejiawen0913/blog/188547 ng-class是AngularJS预设的一个指令,用于动态自定义dom元素的css ...