dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正确粉刷的格子数 , 状态的转移很显然 , w[ i ][ j ] 表示 第 i 行使用 j 次粉刷机会能正确粉刷的格子数.

接下来考虑 w , 对于每一行 : DP[ i ][ j ] = max( DP[ k ][ j - 1 ] + sum( k + 1 , i ) ) ( 0 <= k < i ) sum( l , r ) 表示从区间[ l , r ] 的颜色相同的格子的个数的较大值( 因为两种颜色 ) , 那么 w[ i ][ j ] = 对第 i 行做的 DP[ m ][ j ] .

---------------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<iostream>
 
#define rep( i , n ) for( int i = 0 ;  i < n ; ++i )
#define clr( x , c ) memset( x , c , sizeof( x ) )
#define Rep( i , n ) for( int i = 1 ; i <= n ; ++i )
 
using namespace std;
 
const int maxn = 50 + 5;
const int maxt = 2500 + 5;
 
int sum[ maxn ][ maxn ];
int n , m , T;
int w[ maxn ][ maxt ];
int D[ maxn ][ maxt ];
int d[ maxn ][ maxt ];
 
int cur;
 
int Dp( int x , int k ) {
int &ans = D[ x ][ k ];
if( ans != -1 )
   return ans;
   
ans = 0;
rep( i , x ) {
int t = sum[ cur ][ x ] - sum[ cur ][ i ];
   ans = max( ans , Dp( i , k - 1 ) + max( t , x - i - t ) );
   
}
return ans;
}
 
void init() {
clr( w , 0 );
Rep( i , n ) {
clr( D , -1 );
rep( j , T + 1 ) 
   D[ 0 ][ j ] = 0;
Rep( j , m ) 
   D[ j ][ 0 ] = 0;
   Rep( j , T )
   w[ cur = i ][ j ] = Dp( m , j );
}
}
int dp( int x , int k ) {
int &ans = d[ x ][ k ];
if( ans != -1 ) 
   return ans;
ans = 0;
for( int i = 0 ; i <= k ; i++ )
   ans = max( ans , dp( x - 1 , k - i ) + w[ x ][ i ] );
return ans;
}
 
int main() {
freopen( "test.in" , "r" , stdin );
cin >> n >> m >> T;
Rep( i , n ) {
sum[ i ][ 0 ] = 0;
   Rep( j , m ) {
   
    char c = getchar();
   
    while( ! isdigit( c ) ) c = getchar();
   
    sum[ i ][ j ] += sum[ i ][ j - 1 ] + c - '0';
   
   }
   
}
init();
clr( d , -1 );
memcpy( d[ 0 ] , w[ 0 ] , sizeof d[ 0 ] );
cout << dp( n , T ) << "\n";
return 0;
}

---------------------------------------------------------------------------------------------

1296: [SCOI2009]粉刷匠

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1056  Solved: 620
[Submit][Status][Discuss]

Description

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。

Output

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

Sample Input

3 6 3
111111
000000
001100

Sample Output

16

HINT

30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。
100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。

Source

BZOJ 1296: [SCOI2009]粉刷匠( dp )的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  2. bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】

    参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...

  3. bzoj 1296: [SCOI2009]粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  4. bzoj 1296: [SCOI2009]粉刷匠 动态规划

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  5. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  6. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  7. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  8. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  9. 1296: [SCOI2009]粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

随机推荐

  1. c++ 关于类构造函数的初始化列表

    除了性能问题之外,有些时场合初始化列表是不可或缺的,以下几种情况时必须使用初始化列表 常量成员,因为常量只能初始化不能赋值,所以必须放在初始化列表里面 引用类型,引用必须在定义的时候初始化,并且不能重 ...

  2. [虚拟化/云] kvm的架构分析

    预备知识 1. 客户机物理页框到宿主机虚拟地址转换 http://blog.csdn.net/zhuriyuxiao/article/details/8968781 http://www.tuicoo ...

  3. iOS获取手机当前的网络状态

    获取iOS网络状态,目前有两个办法. 1.通过监听手机状态栏的信息. 2.通过使用官方提供的类Reachability. 一.通过手机监听手机状态栏的信息 好处: 1.可以通过苹果的审核上架AppSt ...

  4. leetcode 刷题之路 64 Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note: You may assume tha ...

  5. 核心基础以及Fragment与Activity传递数据完整示例

    MainActivity如下: package cc.testsimplefragment0; import android.os.Bundle; import android.app.Activit ...

  6. 《4》CentOS7.0+OpenStack+kvm云平台部署—配置Nova

    感谢朋友支持本博客,欢迎共同探讨交流,因为能力和时间有限,错误之处在所难免,欢迎指正! 假设转载.请保留作者信息. 博客地址:http://blog.csdn.net/qq_21398167 原博文地 ...

  7. servlet生成随机验证码

    package com.cgyue; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import jav ...

  8. 关于SVM一篇比较全介绍的博文

    转自:http://blog.csdn.net/v_july_v/article/details/7624837 支持向量机通俗导论(理解SVM的三层境界) 前言 动笔写这个支持向量机(support ...

  9. FTP创建与操作

    1,FTP服务创建于配置http://jingyan.baidu.com/article/0a52e3f4230067bf63ed7268.html, 2,FTP操作类 using System; u ...

  10. 在C#调用C++的DLL方法(一)生成非托管dll

    C#与C/C++相比,前者的优势在于UI,后者的优势在于算法,C++下的指针虽然恶心,若使用得当还是相当方便的,最重要的问题是,市面上很多流行的开发工具库,几乎没有不支持C++的,但全面支持C#只能说 ...