水状压dp.

dp(x, s) = max{ dp( x - 1, s - {h} ) } + 奖励(假如拿到的) (h∈s). 时间复杂度O(n * 2^n)

----------------------------------------------------------------------------------

#include<bits/stdc++.h>
 
#define rep(i, n) for(int i = 0; i < n; ++i)
#define clr(x, c) memset(x, c, sizeof(x))
#define foreach(e, x) for(__typeof(x.begin()) e = x.begin(); e != x.end(); e++)
#define b(i) (1 << (i))
 
using namespace std;
 
const int maxn = 22;
 
int dp[2][b(maxn)], s[maxn][maxn], n;
vector<int> ok[maxn];
vector< pair<int, int> > rew[maxn];
 
int main() {
freopen("test.in", "r", stdin);
clr(dp, 0);
int b;
cin >> n >> b;
rep(i, n) {
ok[i].clear();
rew[i].clear();
}
while(b--) {
int p, k, a;
scanf("%d%d%d", &p, &k, &a); p--;
rew[p].push_back(make_pair(k, a));
}
int cur = 0, p = 1;
rep(i, n) rep(j, n) scanf("%d", s[i] + j);
rep(j, n) {
dp[cur][b(j)] = s[j][0];
foreach(it, rew[0]) if(s[j][0] >= it->first)
   dp[cur][b(j)] += it->second;
}
rep(t, b(n)) {
int cnt = 0;
rep(i, n) if(t & b(i)) cnt++;
if(cnt--) ok[cnt].push_back(t);
}
for(int i = 1; i < n; ++i) {
swap(cur, p);
foreach(it, ok[i]) {
rep(j, n) if(b(j) & *it) 
   dp[cur][*it] = max(dp[cur][*it], dp[p][*it ^ b(j)] + s[j][i]);
foreach(t, rew[i]) if(dp[cur][*it] >= t->first)
   dp[cur][*it] += t->second;
}
}
cout << dp[cur][b(n) - 1] << "\n";
return 0;
}

----------------------------------------------------------------------------------

3446: [Usaco2014 Feb]Cow Decathlon

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 58  Solved: 41
[Submit][Status][Discuss]

Description

FJ有N(1 <= N <= 20)头奶牛,编号1至N。FJ提供N种不同的技能供奶牛们学习,每头奶牛只能学习一门技能,每门技能都要有奶牛学习。 第i头奶牛学习第j门技能,FJ得到的分数S[i][j],1<=S[i][j]<=1000。此外还有B(1 <= B <= 20)个奖励,第i个奖励的格式是: Pi 、Ki 、Ai,表示的意义是:如果学习完前Ki门技能后的总得分(包括额外的奖励得分)不少于Pi,那么FJ还会得到额外的Ai分。那么FJ应该如何安排奶牛学习技能,才能使得最后的总得分最高?

Input

第一行,N和B。  接下来有B行,每行三个整数:Pi 、Ki 、Ai。1 <= Pi <= 40000,1 <= Ai <= 1000。    接下来有N行N列的二维数组,表示S[i][j]。1 <= S[i][j] <= 1000。

Output

一个整数,最大得分。

Sample Input

3 1
2 7 6
5 1 7
2 2 4
4 2 1

Sample Output

17
奶牛1学习技能1,奶牛2学习技能3,奶牛3学习技能2。

HINT

Source

BZOJ 3446: [Usaco2014 Feb]Cow Decathlon( 状压dp )的更多相关文章

  1. bzoj3446[Usaco2014 Feb]Cow Decathlon*

    bzoj3446[Usaco2014 Feb]Cow Decathlon 题意: FJ有n头奶牛.FJ提供n种不同的技能供奶牛们学习,每头奶牛只能学习一门技能,每门技能都要有奶牛学习. 第i头奶牛学习 ...

  2. [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

    题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...

  3. BZOJ 3195 [Jxoi2012]奇怪的道路 | 状压DP

    传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度 ...

  4. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  5. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  6. BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)

    BZOJ DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合 ...

  7. BZOJ 4197 NOI 2015 寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  8. BZOJ 1879 [Sdoi2009]Bill的挑战 ——状压DP

    本来打算好好写写SDOI的DP题目,但是忒难了, 太难了,就写的这三道题仿佛是可做的. 生在弱省真是兴奋. 这题目直接状压,f[i][j]表示匹配到i,状态集合为j的方案数,然后递推即可. #incl ...

  9. bzoj 4197: [Noi2015]寿司晚宴【状压dp】

    一个数内可能多个的质因数只有小于根号n的,500内这样的数只有8个,所以考虑状压 把2~n的数处理出小于根号500的质因数集压成s,以及大质数p(没有就是1),然后按p排序 根据题目要求,拥有一个质因 ...

随机推荐

  1. 经验总结:按需加载JS和css

    项目中做过这样的事情:所有页面都通过SSI指令 include这样一份public-js.shtml, 用来引入涉及到的js(包括公共的脚本 验证插件 自定义组件等),但是一些没有交互效果的页面根本不 ...

  2. junit参数化测试的使用方法

    JUnit参数化测试的五个步骤:(1)为准备使用参数化测试的测试类指定特殊的运行器 org.junit.runners.Parameterized.(2)为测试类声明几个变量,分别用于存放期望值和测试 ...

  3. poj 1080 zoj 1027(最长公共子序列变种)

    http://poj.org/problem?id=1080 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=27 /* zoj ...

  4. 浅谈长尾理论--《Makers》读后感

    近期有幸读了一本好书<Makers>,作者是克里斯·安德森.作为3D Robotics和DIY Drones的联合创始人,自然对于正步入的“第三次工业革命”有较为深刻的体会.清晰的逻辑中, ...

  5. POJ 1692 Crossed Matchings(DP)

    Description There are two rows of positive integer numbers. We can draw one line segment between any ...

  6. 队列的定义与实现(C语言实现)

    小时候.我们做早操的时候或者军训的时候,都排成一列,有头有尾.如果你迟到了,仅仅能站到最后面一个.退场的时候.都是由第一个先走的.这就是队列雏形. 队列的定义 队列是一种特殊的线性表 队列仅在线性表的 ...

  7. 第一篇:GCD的使用

    一.主队列介绍 主队列是和主线程相关的队列,主队列是GCD自带的一种特殊的串行队列,放在主队列中的任务,都会放到主线程中执行. 提示:如果把任务放到主队列进行处理,那么不论处理函数是异步的还是同步的都 ...

  8. Python函数式编程:Lambda表达式

    首先我们要明白在编程语言中,表达式和语句的区别. 表达式是一个由变量.常量.有返回值的函数加运算符组成的一个式子,该式子是有返回值的 ,如  a + 1 就是个表达式, 单独的一个常量.变量 或函数调 ...

  9. 为什么要选择cdn加速

    CDN的通俗理解就是网站加速,CPU均衡负载,可以解决跨运营商,跨地区,服务器负载能力过低,带宽过少等带来的网站打开速度慢等问题. 比如: 1.一个企业的网站服务器在北京,运营商是电信,在广东的联通用 ...

  10. JSpider是一个用Java实现的WebSpider

    JSpider是一个用Java实现的WebSpider,JSpider的执行格式如下: jspider [URL] [ConfigName] URL一定要加上协议名称,如:http://,否则会报错. ...