线段特征上的扫描点满足 (1)。本文的线段特征定义为:L: [dL, φL, PLs, PLe]T,如图1所示。其中,dL为笛卡尔坐标系中原点(激光传感器所在位置)到线段的距离, φL为线段特征的倾角,PLs为线段特征起点,PLe为线段特征终点。线段特征在笛卡尔坐标系下方程为:

                                                                                                                                                                          (1)

其中,dL > 0,-π < φL < πxi = ρicosφiyi = ρisinφi

图1 线段

前几节中,通过统计学方法划分出若干区域,为了准确提取线段特征,采用带约束的最小二乘法对每个划分区域特征进行特征提取,将(1)式转换为如下形式:

                                                                                                                                                                   (2)

式中 SE——线段端点。

将上式改写为矩阵形式有:

                                                                                                                                                        (3)

其中, , , 。由于α22=1,引入拉格朗日乘子λ,得:

                                                                                                                                                                                             (4)

其中,,满足JTCJ=1。令,得:

                                                                                                                                                                                                          (5)

解上式的广义特征值与广义特征向量,S为一个正定矩阵,待求特征向量J一定对应最小的特征值λ。当αβ确定以后,可以求得:

                                                                                                                                                                                                     (6)

然后,求出线段特征dL。最后,转换到全局坐标系下。

文献[1]给出了一种误差传播方法,通过最小化隐含的关系方程F(I,O),给出最终误差(I输入误差,O输出误差)。将误差扩展到协方差矩阵,可以通过输入的协方差矩阵ΣI,得到输出的协方差矩阵ΣL。则有:

                                                                                                                                        (7)

其中,令:

                                                                                                                                                                                      (8)

代入最后计算出ΣL

[1] Haralick R M. Propagating covariance in computer vision[M]. Performance Characterization in Computer Vision. Springer Netherlands, 2000: 95-114.

线段拟合(带拉格朗日乘子,HGL)的更多相关文章

  1. 关于拉格朗日乘子法和KKT条件

    解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报  分类: 模式识别&机器学习(42 ...

  2. 装载:关于拉格朗日乘子法与KKT条件

    作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...

  3. 约束优化方法之拉格朗日乘子法与KKT条件

    引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT ...

  4. 机器学习笔记——拉格朗日乘子法和KKT条件

    拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法,通过引入拉格朗日乘子,可将有m个变量和n个约束条件的最优化问题转化为具有m+n个变量的无约束优化问题.在介绍拉格朗日乘子法之前,先简要的介绍一些 ...

  5. 真正理解拉格朗日乘子法和 KKT 条件

        这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容.     首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\]     如 ...

  6. 关于拉格朗日乘子法与KKT条件

    关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...

  7. 拉格朗日乘子法 - KKT条件 - 对偶问题

    接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题 ...

  8. 支持向量机(SVM)必备概念(凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件、KKT条件)

    SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有 ...

  9. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

随机推荐

  1. spring cloud 之 Feign的使用

    1.添加依赖 2.创建FeignClient 原理:Spring Cloud应用在启动时,Feign会扫描标有@FeignClient注解的接口,生成代理,并注册到Spring容器中.生成代理时Fei ...

  2. 通过宏定义将__declspec(dllexport)与__declspec(dllimport)的转化,实现库代码和使用代码使用同一份头文件

    我们知道,在VC编程中,如果要编译成动态链接库,需要将函数.变量.类等导出,这时使用__declspec(dllexport).使用动态链接库时,需要在声明的时候有使用__declspec(dllim ...

  3. pat09-散列3. Hashing - Hard Version (30)

    09-散列3. Hashing - Hard Version (30) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 HE, Qin ...

  4. jQuery 文本插入和标签移动方法

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. java版两人聊天程序

    server.java import java.io.*; import java.net.*; import java.text.SimpleDateFormat; import java.util ...

  6. 在 Linux 上创建第一个 Service Fabric Java 应用程序

    先决条件 开始之前,请安装 Service Fabric SDK.Azure CLI,并在 Linux 开发环境中设置开发群集. 如果使用 Mac OS X,则可使用 Vagrant 在虚拟机中设置 ...

  7. vscode设置语言

     按 ctrl+shift+p   中文设置成英文输入 “配置语言”  打开locale.json 设置 "locale":"en" 英文设置成中文输入 &qu ...

  8. js之箭头函数

    原文 ES6标准新增了一种新的函数:Arrow Function(箭头函数). 为什么叫Arrow Function?因为它的定义用的就是一个箭头: x => x * x 上面的箭头函数相当于: ...

  9. iOS instruments之ui automation的简单使用(高手绕道)

    最近使用了几次instruments中的automation工具,现记录下automation的简单使用方法,希望对没接触过自动化测试又有需求的人有所帮助.  UI 自动测试是iOS 中重要的附加功能 ...

  10. CRM——讲师与学生

    一.课程记录和学习记录 1.初始化 course_record, study_record.2.学习记录3.录入成绩4.显示成绩 ajax 查询 柱状图展示成绩 highcharts 5.上传作业(o ...