Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).  

    这道题做了挺久的...感觉还是对于Burnside引理理解的不够透彻吧。

    Burnside引理:

      L=1/|G|*(c1+c2+...ck),ci表示第i种置换的不动置换类。如置换:(123)(45)(6)中的不动置换类只有(6)一个。

    这道题不能用Polya定理,因为每种颜色有具体的数量要求,不能任意染色。

    题目中给的洗牌方法,很显然就是一个个置换了。那么不动置换类要怎么求呢?

    颜色相同的看上去也一样,所以如果置换后位置上的颜色与原位置的颜色相同,也算是不动置换类

    而这道题需要思考的是,我们应该怎样把染色方案带到公式里去。

    答案是,将一个染色方案看做一个元素。

    即这道题中的不动置换类为经过该种置换后仍然不变的一个染色方案。

    那么不动置换类的个数即ci也就是满足在经过i种置换后每一位上颜色都不变的染色方案总数。

    则每个循环中要染同一种颜色,可以用01背包来计算方案数。

    最后不能忘记最重要也是最基础的一个置换即(1)(2)(3)...(n)这个置换。

    实现的过程中需要用到求乘法逆元。稍加注意即可。

     

program bzoj1004;
const maxn=;
var i,j,t1,t2,t3:longint;
s1,s2,s3,m,p,n,ans,tot,sum,x:int64;
f:array[-..maxn,-..maxn,-..maxn]of int64;
vis:array[-..maxn]of boolean;
a:array[-..maxn]of longint; function ex_Euclid(a,b:int64;var x,y:int64):int64;
var t:int64;
begin
if b= then
begin
x:=;y:=;exit(a);
end else
begin
ex_Euclid:=ex_Euclid(b,a mod b,x,y);
t:=x;x:=y;y:=t-(a div b)*y;
end;
end; function inverse(a:int64):int64;
var x,y,tem,d:int64;
begin
d:=ex_Euclid(a,p,x,y);
if d<> then exit(-) else
begin
if x< then
begin
tem:=(-x) div p;
x:=x+tem*p;y:=y-tem*a;
end;
if x< then
begin
x:=x+p;y:=y-p;
end;
end;
exit(x);
end; begin
readln(s1,s2,s3,m,p);n:=s1+s2+s3;
ans:=;
for i:= to n do ans:=(ans*i) mod p;
for i:= to s1 do ans:=(ans*inverse(i)) mod p;
for i:= to s2 do ans:=(ans*inverse(i)) mod p;
for i:= to s3 do ans:=(ans*inverse(i)) mod p;
for i:= to m do
begin
fillchar(f,sizeof(f),);
fillchar(vis,sizeof(vis),true);
f[,,]:=;sum:=;
for j:= to n do read(a[j]);readln;
for j:= to n do if vis[j] then
begin
tot:=;
x:=a[j];vis[j]:=false;
while x<>j do
begin
inc(tot);
vis[x]:=false;
x:=a[x];
end;
inc(sum,tot);
for t1:= to sum do
for t2:= to sum-t1 do
begin
t3:=sum-t1-t2;
if t1-tot>= then f[t1,t2,t3]:=(f[t1,t2,t3]+f[t1-tot,t2,t3]) mod p;
if t2-tot>= then f[t1,t2,t3]:=(f[t1,t2,t3]+f[t1,t2-tot,t3]) mod p;
if t3-tot>= then f[t1,t2,t3]:=(f[t1,t2,t3]+f[t1,t2,t3-tot]) mod p;
end;
end;
end;
ans:=(ans*inverse(m+)) mod p;
writeln(ans);
end.

 

      

[BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)的更多相关文章

  1. 洛谷 P1446 [HNOI2008]Cards 解题报告

    P1446 [HNOI2008]Cards 题目描述 小春现在很清闲,面对书桌上的\(N\)张牌,他决定给每张染色,目前小春只有\(3\)种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun ...

  2. 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP

    题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...

  3. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  4. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  5. [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  6. bzoj1004 [HNOI2008]Cards Burnside 引理+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...

  7. BZOJ1004 HNOI2008 Cards Burnside、背包

    传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...

  8. bzoj1004 [HNOI2008]Cards Burnside定理+背包

    题目传送门 思路:首先是Burnside引理,要先学会这个博客. Burnside引理我们总结一下,就是 每种置换下不动点的数量之和除以置换的总数,得到染色方案的数量.        这道题,显然每种 ...

  9. bzoj1004 [HNOI2008]Cards 置换群+背包

    [bzoj1004][HNOI2008]Cards 2014年5月26日5,3502 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿 ...

随机推荐

  1. Vuex实践

    本文来自网易云社区 作者:刘凌阳 前言 2017年对于Vue注定是不平凡的一年.凭借着自身简介.轻量.快速等特点,Vue俨然成为最火的前端MVVM开发框架.随着Vue2.0的release,越来越多的 ...

  2. 正则表达式 Pattern和Matcher

    java.util.regex是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包. 1.简介:  java.util.regex是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包. ...

  3. IDEA + Maven + SSM 框架整合步骤

    因为前段时间自己想写个SSM的demo,然而不知怎么回事,配置完之后出现错误,怎么都调不好.最后从朋友那里拷了一个SSM的demo过来搭建成功,写这篇东西也是为了以后如果还有需要可以方便的查阅,并且也 ...

  4. create subnet

    子网相关功能点: 模块 功能 描述 备注 子网 创建子网 创建一个子网   设置子网网段范围   设置子网网关IP/不开启网关   给子网开启/关闭dhcp   设置子网dns   修改子网 修改子网 ...

  5. CentOS7 Zabbix4.0环境下的安装和配置实例

    1.安装准备 Zabbix4.0对基础架构有一定的要求,对的英文尤其PHP状语从句:MySQL: 类型 内容 服务端运行环境 Linux和PHP与Web服务器和数据库 服务端操作系统 CentOS7. ...

  6. CCS Font 知识整理总结

    总是搞不懂 CCS 中如何正确的使用字体,这下明白了. 1.什么是 font-face font-face 顾名思义,就是文字的脸.字体是文字的外在形式,就是文字的风格,是文字的外衣.比如行书.楷书. ...

  7. Linux e1000e网卡驱动

    目录 识别网卡 命令行参数 附加配置 技术支持 一.识别网卡e1000e驱动支持Intel所有的GbE PCIe网卡,除了82575,82576,基于82580系列的网卡.提示:Intel(R) PR ...

  8. 【EasyNetQ】- 使用Future Publish调度事件

    许多业务流程要求在将来某个日期安排事件.例如,在与客户进行初次销售联系后,我们可能希望在将来的某个时间安排跟进电话.EasyNetQ可以通过其Future Publish功能帮助您实现此功能.例如,这 ...

  9. 日期时间选择器datetimepicker.js

    在做项目中,往往会遇到需要用户输入2014-07-19 09:55:53这样的格式的数据.就是典型的年月日时分秒这样的格式.这个时候,使用datetimepicker会比较简单. DateTimePi ...

  10. BZOJ 1030 文本生成器 | 在AC自动机上跑DP

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1030 题解: 鸽 #include<cstdio> #include<al ...