BZOJ 2095: [Poi2010]Bridges
2095: [Poi2010]Bridges
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 869 Solved: 299
[Submit][Status][Discuss]
Description
YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛。现在YYD想骑单车从小岛1出发,骑过每一座桥,到达每一个小岛,然后回到小岛1。霸中同学为了让YYD减肥成功,召唤了大风,由于是海上,风变得十分大,经过每一座桥都有不可避免的风阻碍YYD,YYD十分ddt,于是用泡芙贿赂了你,希望你能帮他找出一条承受的最大风力最小的路线。
Input
输入:第一行为两个用空格隔开的整数n(2<=n<=1000),m(1<=m<=2000),接下来读入m行由空格隔开的4个整数a,b(1<=a,b<=n,a<>b),c,d(1<=c,d<=1000),表示第i+1行第i座桥连接小岛a和b,从a到b承受的风力为c,从b到a承受的风力为d。
Output
输出:如果无法完成减肥计划,则输出NIE,否则第一行输出承受风力的最大值(要使它最小)
Sample Input
1 2 2 4
2 3 3 4
3 4 4 4
4 1 5 4

Sample Output
HINT
注意:通过桥为欧拉回路
Source
分析:
最大值最小的问题...
二分答案,然后就转化成了混合图欧拉回路的存在性问题...可以参考POJ 1637
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define inf 0x3f3f3f3f
using namespace std; const int maxn=1000+5,maxm=10000+5; int n,m,S,T,tot,Min,Max,in[maxn],out[maxn],vis[maxm];
int cnt,hd[maxn],fl[maxm],to[maxm],pos[maxn],nxt[maxm]; struct M{
int x,y,c,d;
}e[maxm]; inline void add(int x,int y,int s){
fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
fl[cnt]=0;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} inline bool bfs(void){
memset(pos,-1,sizeof(pos));
int head=0,tail=0,q[maxn];
pos[S]=0;q[0]=S;
while(head<=tail){
int top=q[head++];
for(int i=hd[top];i!=-1;i=nxt[i])
if(pos[to[i]]==-1&&fl[i])
pos[to[i]]=pos[top]+1,q[++tail]=to[i];
}
return pos[T]!=-1;
} inline int find(int v,int f){
if(v==T) return f;
int res=0,t;
for(int i=hd[v];i!=-1&&f>res;i=nxt[i])
if(pos[to[i]]==pos[v]+1&&fl[i])
t=find(to[i],min(fl[i],f-res)),res+=t,fl[i]-=t,fl[i^1]+=t;
if(!res) pos[v]=-1;
return res;
} inline int dinic(void){
int res=0,t;
while(bfs())
while(t=find(S,inf))
res+=t;
return res;
} inline bool check(int val){
cnt=0;tot=0;
memset(in,0,sizeof(in));
memset(hd,-1,sizeof(hd));
memset(out,0,sizeof(out));
memset(vis,0,sizeof(vis));
for(int i=1;i<=m;i++){
if(e[i].c<=val) vis[i]+=1;
if(e[i].d<=val) vis[i]+=2;
}
for(int i=1;i<=m;i++){
if(vis[i]==3)
in[e[i].y]++,out[e[i].x]++,add(e[i].x,e[i].y,1);
else if(vis[i]==1)
in[e[i].y]++,out[e[i].x]++;
else if(vis[i]==2)
in[e[i].x]++,out[e[i].y]++;
}
for(int i=1;i<=n;i++)
if(abs(in[i]-out[i])&1)
return false;
for(int i=1;i<=n;i++)
if(in[i]<out[i])
add(S,i,(out[i]-in[i])/2),tot+=(out[i]-in[i])/2;
else if(in[i]>out[i])
add(i,T,(in[i]-out[i])/2);
if(dinic()==tot)
return true;
return false;
} signed main(void){
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
scanf("%d%d",&n,&m);Min=2333;Max=0;S=0,T=n+1;
for(int i=1;i<=m;i++)
scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].c,&e[i].d),
Min=min(Min,min(e[i].c,e[i].d)),
Max=max(Max,max(e[i].c,e[i].d));
int l=Min,r=Max,ans=-1;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid))
ans=mid,r=mid-1;
else
l=mid+1;
}
if(ans==-1) puts("NIE");
else printf("%d\n",ans);
return 0;
}
By NeighThorn
BZOJ 2095: [Poi2010]Bridges的更多相关文章
- bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]
2095: [Poi2010]Bridges 二分答案,混合图欧拉路判定 一开始想了一个上下界网络流模型,然后发现不用上下界网络流也可以 对于无向边,强制从\(u \rightarrow v\),计算 ...
- bzoj 2095 [Poi2010]Bridges 判断欧拉维护,最大流+二分
[Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1448 Solved: 510[Submit][Status][D ...
- BZOJ 2095 [POI2010]Bridges (最大流、欧拉回路)
洛谷上有这题,但是输出方案缺SPJ..(而且我也懒得输出方案了) 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2095 题解: 首先判 ...
- bzoj 2095: [Poi2010]Bridges(二分法+混合图的欧拉回路)
[题意] 给定n点m边的无向图,对于边u,v,从u到v边权为c,从v到u的边权为d,问能够经过每条边一次且仅一次,且最大权值最小的欧拉回路. [思路] 二分答案mid,然后切断权值大于mid的边,原图 ...
- BZOJ.2095.[POI2010]Bridges(最大流ISAP 二分 欧拉回路)
题目链接 最小化最大的一条边,二分答案.然后就变成了给一张无向图定向使其为欧拉回路 二分答案后对于一个位置的两条边可能都保留,即双向边,需要给它定向:可能只保留小的一条,即单向边,不需考虑 如何给它定 ...
- 【刷题】BZOJ 2095 [Poi2010]Bridges
Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛.现在YYD想骑单车从小岛1 ...
- BZOJ 2095 [Poi2010]Bridges (二分+最大流判断混合图的欧拉回路)
题面 nnn个点,mmm条双向边(正向与反向权值不同),求经过最大边权最小的欧拉回路的权值 分析 见 commonc大佬博客 精髓就是通过最大流调整无向边的方向使得所有点的入度等于出度 CODE #i ...
- [BZOJ2095][Poi2010]Bridges 最大流(混合图欧拉回路)
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MB Description YYD为了减肥,他来到了瘦海,这是一个巨大的海, ...
- [BZOJ2095][Poi2010]Bridges 二分+网络流
2095: [Poi2010]Bridges Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1187 Solved: 408[Submit][Sta ...
随机推荐
- 记一次艰难的CTP调试
一个atmel,mxt540e的CTP触摸屏. 中断配置为下降沿,输入上拉. 总是只能触发一次中断,中断脚就一直低电平,无法拉高.这只是表面现象 不停找底层I2C驱动,改代码,没用.要靠波形来说话 ...
- 【python模块】——logging
python学习——logging模块
- 「日常训练」 Soldier and Cards (CFR304D2C)
题意 (Codeforces 546C) 按照指定的规则打牌,问谁胜或无穷尽. 分析 又是一条模拟,用set+queue(这里手写了)处理即可.注意到两种局势"1 234"和&qu ...
- Selenium驱动Chrome浏览器
import org.openqa.selenium.By;import org.openqa.selenium.WebDriver;import org.openqa.selenium.chrome ...
- Jenkins - 持续集成部署
1. 安装svn:用于checkout源码 (1)yum 安装:yum -y install subversion (2)查看svn版本信息:svnserver --version 2. 安装jdk ...
- Thymeleaf 使用时的标签
1 . onclick事件 <a th:onclick="'javascript:more()'" ></a> 2.引入CSS样式 <link t ...
- 九度OJ--1163(C++)
#include <iostream>#include <vector> using namespace std; int main() { int n; while(cin& ...
- 九度OJ--Q1167
import java.util.Scanner;import java.util.TreeSet; /* * 题目描述: * 输入一个数组的值,求出各个值从小到大排序后的次序. * 输入: * 输入 ...
- BZOJ 1010 HNOI2008 玩具装箱 斜率优化
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的 ...
- 多线程 定时器 Timer TimerTask
定时器是一种特殊的多线程,使用Timer来安排一次或者重复执行某个任务 package org.zln.thread; import java.util.Date; import java.util. ...