数学:乘法逆元-拓展GCD
乘法逆元应用在组合数学取模问题中,这里给出的实现不见得好用
给出拓展GCD算法:
扩展欧几里得算法是指对于两个数a,b
一定能找到x,y(均为整数,但不满足一定是正数)
满足x*a+y*b=gcd(a,b)
gcd(x,y)是指x 与 y的最大公约数
有啥用呢?求解形如 a*x +b*y = c 的通解
然后我们先介绍同余方程,再介绍乘法逆元
同余方程
a≡b(mod m) 等价于小学的运算式 b÷m 余数为a
也就是a mod m=b
其实介绍这个就是看怎么把≡拿掉
乘法逆元
ax ≡ (mod m)
我们称 x 是 a 关于 m 的乘法逆元
可以等价于这样的表达式: a*x + m*y =
当满足这个式子的时候:a*x + b*y = c 有解的充要条件: c % gcd(a , b) == 0
一般,我们能够找到无数组解满足条件,但是一般是让你求解出最小的那组解
我们求解出来了一个特殊的解 x0 ,我们用 x0 % m其实就得到了最小的解了
#include<cstdio>
using namespace std;
inline long long read()
{
long long x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int a,b;
void exgcd(int a,int b,int &x,int &y)
{
if(b==) {x=;y=;return;}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*y;
}
//ax ≡ 1 (mod b)
//-> a*x + b*y = 1
//->求出x和y后让x%b就是最小解了
int main()
{
a=read();b=read();
int x,y;
exgcd(a,b,x,y);
x=(x%b+b)%b;
printf("%d",x);
return ;
}
数学:乘法逆元-拓展GCD的更多相关文章
- HDU 6050 17多校2 Funny Function(数学+乘法逆元)
Problem Description Function Fx,ysatisfies:For given integers N and M,calculate Fm,1 modulo 1e9+7. ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- 51 Nod 1256 乘法逆元(数论:拓展欧几里得)
1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- 礼物(中国剩余定理+拓展gcd求逆元+分治=拓展Lucus)
礼物 题意: 求\[C(n,m)\ \%\ p\] \(n,m,p\le 10^9\),且若\(p=\prod_{i=1}^{k}{p_i}^{c_i}\),则\(\forall i\in [1..k ...
- 【learning】 扩展欧几里得算法(扩展gcd)和乘法逆元
有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^ ...
- 扩展GCD 中国剩余定理(CRT) 乘法逆元模版
extend_gcd: 已知 a,b (a>=0,b>=0) 求一组解 (x,y) 使得 (x,y)满足 gcd(a,b) = ax+by 以下代码中d = gcd(a,b).顺便求出gc ...
- 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
随机推荐
- C#中利用iTextSharp开发二维码防伪标签(1)
开发的基本说明与尝试 一个亲戚朋友是做防伪码印刷的,之前的电话防伪.短信防伪都用Delphi给他设计,使用也挺不错,后来又加了一个基于asp的网页版防伪查询.由于业务需求,今年年初朋友又提成希望能够完 ...
- model的index无限次数执行导致stackOverFlow
model的index无限次数执行导致stackOverFlow
- python基础篇 05字典
本节主要内容:1. 字典的简单介绍2. 字典增删改查和其他操作3. 字典的嵌套 一. 字典的简单介绍:字典(dict)是python中唯一的一个映射类型.他是以{ }括起来的键值对组成. 在dict中 ...
- tensorflow nmt基本配置(tf-1.4)
随着tensorflow的不断更新,直接按照nmt的教程搭建nmt环境会报错的...因此,需要一些不太好的办法来避免更多的问题出现.tensorflow看来在ubuntu和debian中运行是没有问题 ...
- 从传统IT快速走向公共云计算
2年前有篇报道,说Facebook的每个运维同学至少能管理2万台服务器,这在当时的国内互联网引起了很大震动,按照传统IT的理解,每个运维同学能管理200台服务器已经很了不起了. 这些年来云计算发展非常 ...
- spring boot 线程池配置
1.配置类 package cn.com.bonc.util; import java.util.concurrent.Executor; import java.util.concurrent.Th ...
- LeetCode 876——链表的中间结点
1. 题目 给定一个带有头结点 head 的非空单链表,返回链表的中间结点. 如果有两个中间结点,则返回第二个中间结点. 示例 1: 输入:[1,2,3,4,5] 输出:此列表中的结点 3 (序列化形 ...
- 关于百度Editor富文本编辑器 自定义上传位置
因为要在网站上编辑富文本数据,所以直接采用百度的富文本编辑器,但是这个编辑器有个缺点,默认情况下,文件只能上传到网站的根目录,不能自定义路径. 而且json配置文件只能和controller.jsp在 ...
- CE-HTML简介
1.典型的CE-HTML代码如下: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html ...
- hash function比较
http://blog.csdn.net/kingstar158/article/details/8028635 由于工作需要,针对千万级别的数据,使用stl::map着实存在着效率问题,最后使用bo ...