洛谷 P4001 [ICPC-Beijing 2006]狼抓兔子
题目描述
现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=3,M=4).有以下三种类型的道路
1:(x,y)<==>(x+1,y)
2:(x,y)<==>(x,y+1)
3:(x,y)<==>(x+1,y+1)
道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下角(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦。
输入输出格式
输入格式:
第一行为N,M.表示网格的大小,N,M均小于等于1000.
接下来分三部分
第一部分共N行,每行M-1个数,表示横向道路的权值.
第二部分共N-1行,每行M个数,表示纵向道路的权值.
第三部分共N-1行,每行M-1个数,表示斜向道路的权值.
输出格式:
输出一个整数,表示参与伏击的狼的最小数量.
输入输出样例
输入样例#1:
3 4
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
输出样例#1:
14
思路:按照题目中所说的,见横向,纵向和沿对角线的边,题目显然是要我们求最小割,直接跑dinic求最大流就可以了。
代码:
#include<cstdio>
#include<cstring>
#include<cctype>
#include<queue>
#define maxn 2000007
#define inf 0x3f3f3f3f
using namespace std;
int n,m,S=1,T,head[maxn],num=1,d[maxn];
inline int qread() {
char c=getchar();int num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';
return num*f;
}
struct node {
int v,w,nxt;
}e[6000007];
inline void ct(int u, int v, int w) {
e[++num].v=v;
e[num].w=w;
e[num].nxt=head[u];
head[u]=num;
}
inline bool bfs() {
memset(d,-1,sizeof(d));
queue<int>q;
q.push(S),d[S]=0;
while(!q.empty()) {
int u=q.front();
q.pop();
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(e[i].w&&d[v]==-1) {
d[v]=d[u]+1;
q.push(v);
}
}
}
return d[T]!=-1;
}
int dfs(int u, int f) {
if(u==T) return f;
int rest=f;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(d[v]==d[u]+1&&e[i].w&&rest) {
int t=dfs(v,min(e[i].w,rest));
if(!t) d[v]=0;
e[i].w-=t;
e[i^1].w+=t;
rest-=t;
}
}
return f-rest;
}
inline int dinic() {
int ans=0;
while(bfs()) ans+=dfs(S,inf);
return ans;
}
int main() {
n=qread(),m=qread();
T=n*m;
for(int i=1;i<=n;++i) {
int tmp=(i-1)*m;
for(int j=1,x;j<m;++j) {
x=qread();
ct(tmp+j,tmp+j+1,x),ct(tmp+1+j,tmp+j,x);
}
}
for(int i=1;i<n;++i) {
int tmp=(i-1)*m;
for(int j=1,x;j<=m;++j) {
x=qread();
ct(tmp+j,tmp+j+m,x),ct(tmp+j+m,tmp+j,x);
}
}
for(int i=1;i<n;++i) {
int tmp=(i-1)*m;
for(int j=1,x;j<m;++j) {
x=qread();
ct(tmp+j,tmp+m+j+1,x),ct(tmp+m+1+j,tmp+j,x);
}
}
printf("%d\n",dinic());
return 0;
}
洛谷 P4001 [ICPC-Beijing 2006]狼抓兔子的更多相关文章
- 【洛谷4001】 [ICPC-Beijing 2006]狼抓兔子(最小割)
传送门 洛谷 Solution 直接跑最小割板子就好了. 代码实现 #include<stdio.h> #include<stdlib.h> #include<strin ...
- P4001 [ICPC-Beijing 2006]狼抓兔子
题目地址:P4001 [ICPC-Beijing 2006]狼抓兔子 平面图 边与边只在顶点相交的图. 对偶图 对于一个平面图,都有其对应的对偶图. 平面图被划分出的每一个区域当作对偶图的一个点: 平 ...
- 2021.12.02 P4001 [ICPC-Beijing 2006]狼抓兔子(最小割)
2021.12.02 P4001 [ICPC-Beijing 2006]狼抓兔子(最小割) https://www.luogu.com.cn/problem/P4001 题意: 把图分成两部分需要的最 ...
- 洛谷$P4001\ [ICPC-Beijing 2006]$狼抓兔子 网络流+对偶图
正解:网络流+对偶图 解题报告: 传送门! $umm$日常看不懂题系列了$kk$.其实就是说,给定一个$n\cdot n$的网格图,求最小割$QwQ$ 然后网格图的话显然是个平面图,又看到数据范围$n ...
- P4001-[ICPC-Beijing 2006]狼抓兔子【对偶图】
正题 题目链接:https://www.luogu.com.cn/problem/P4001 题目大意 给出一个类似于 的网格图,求起点到终点的最小割. 解题思路 最小割直接跑网络流,然后发现\(di ...
- 解题:BJOI 2006 狼抓兔子
题面 可以看出来是最小割,然后你就去求最大流了 这么大的范围就是让你用网络流卡的?咋想的啊=.=??? 建议还是老老实实用 平面图最小割等于其对偶图最短路 这个东西来做吧,虽然这个东西跑的也挺慢的,最 ...
- ICPC-Beijing 2006 狼抓兔子
题目描述 题解: 裸的最小割. 但是最大流跑不过去怎么办? 转变一下,既然最大流是一条左下<->右上的通路,我们可以把图划分为若干区域, 最后找左下到右上的最短路就行了. 代码: #inc ...
- [BZOJ 2006] 狼抓兔子
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1001 [算法] 最小割 [代码] #include<bits/stdc++.h ...
- BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路
问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...
随机推荐
- java基础之对象当做参数传进方法的堆栈内存解析
值类型当做参数传进方法: 引用类型对象当做参数传进方法: String字符串当做参数传进方法:
- 配置SecureCRT连接VirtualBox虚拟机中的Linux环境
在实际的运维中我们常常使用SecuriteCRT来远程控制Linux服务器.下面将详细介绍windows 7下通过VirtualBox搭建linux开发环境,并最终通过SecurityCRT来远程访问 ...
- inux php pdo mysql 扩展
今天在本机部署了一个pdo项目,发现一些问题,真没想到pdo mysql,不容易装啊,哈哈,我说的不容易,是因为php5.3以前版本,yum源里面根本没有.部署后就报,Undefined class ...
- 在Sqlserver中使用Try Catch
创建错误日志表: CREATE TABLE ErrorLog(errNum INT,ErrSev NVARCHAR(1000),ErrState INT,ErrProc NVARCHAR(1000 ...
- 734. Sentence Similarity 有字典数组的相似句子
[抄题]: Given two sentences words1, words2 (each represented as an array of strings), and a list of si ...
- 8-python模拟登入(无验证码)
方式: 1.手动登入,获取cookie 2.使用cookielib库 和 HTTPCookieProcessor处理器 #_*_ coding: utf-8 _*_ ''' Created on 20 ...
- 在Windows里定时执行一个Python文件
一.系统环境 操作系统:Win7 64位 二.说明 1.建立一个dos批处理文件 例: @echo off C: cd C:\work\python python aaa.py exit 2.利用Wi ...
- C++ 输出精度和输出小数点位数
有时候需要调节小数点的精度或者位数 #include<iostream> #include<iomanip> using namespace std; //设置数据精度 set ...
- SparkR 读取数据& Spark运行的配置
1.本地LOCAL环境安装Spark并试运行配置(在Ubuntu系统下例子) # 打开文件配置环境变量: JAVA,SCALA,SPARK,HADOOP,SBT gedit /etc/profile ...
- Luogu 4198 楼房重建
BZOJ 2957 挺妙的题. 先把题目中的要求转化为斜率,一个点$(x, y)$可以看成$\frac{y}{x}$,这样子我们要求的就变成了一个区间内一定包含第一个值的最长上升序列. 然后把这个序列 ...