题目描述

现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=3,M=4).有以下三种类型的道路

1:(x,y)<==>(x+1,y)

2:(x,y)<==>(x,y+1)

3:(x,y)<==>(x+1,y+1)

道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下角(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦。

输入输出格式

输入格式:

第一行为N,M.表示网格的大小,N,M均小于等于1000.

接下来分三部分

第一部分共N行,每行M-1个数,表示横向道路的权值.

第二部分共N-1行,每行M个数,表示纵向道路的权值.

第三部分共N-1行,每行M-1个数,表示斜向道路的权值.

输出格式:

输出一个整数,表示参与伏击的狼的最小数量.

输入输出样例

输入样例#1:

3 4
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6

输出样例#1:

14

思路:按照题目中所说的,见横向,纵向和沿对角线的边,题目显然是要我们求最小割,直接跑dinic求最大流就可以了。

代码:

#include<cstdio>
#include<cstring>
#include<cctype>
#include<queue>
#define maxn 2000007
#define inf 0x3f3f3f3f
using namespace std;
int n,m,S=1,T,head[maxn],num=1,d[maxn];
inline int qread() {
char c=getchar();int num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';
return num*f;
}
struct node {
int v,w,nxt;
}e[6000007];
inline void ct(int u, int v, int w) {
e[++num].v=v;
e[num].w=w;
e[num].nxt=head[u];
head[u]=num;
}
inline bool bfs() {
memset(d,-1,sizeof(d));
queue<int>q;
q.push(S),d[S]=0;
while(!q.empty()) {
int u=q.front();
q.pop();
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(e[i].w&&d[v]==-1) {
d[v]=d[u]+1;
q.push(v);
}
}
}
return d[T]!=-1;
}
int dfs(int u, int f) {
if(u==T) return f;
int rest=f;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(d[v]==d[u]+1&&e[i].w&&rest) {
int t=dfs(v,min(e[i].w,rest));
if(!t) d[v]=0;
e[i].w-=t;
e[i^1].w+=t;
rest-=t;
}
}
return f-rest;
}
inline int dinic() {
int ans=0;
while(bfs()) ans+=dfs(S,inf);
return ans;
}
int main() {
n=qread(),m=qread();
T=n*m;
for(int i=1;i<=n;++i) {
int tmp=(i-1)*m;
for(int j=1,x;j<m;++j) {
x=qread();
ct(tmp+j,tmp+j+1,x),ct(tmp+1+j,tmp+j,x);
}
}
for(int i=1;i<n;++i) {
int tmp=(i-1)*m;
for(int j=1,x;j<=m;++j) {
x=qread();
ct(tmp+j,tmp+j+m,x),ct(tmp+j+m,tmp+j,x);
}
}
for(int i=1;i<n;++i) {
int tmp=(i-1)*m;
for(int j=1,x;j<m;++j) {
x=qread();
ct(tmp+j,tmp+m+j+1,x),ct(tmp+m+1+j,tmp+j,x);
}
}
printf("%d\n",dinic());
return 0;
}

洛谷 P4001 [ICPC-Beijing 2006]狼抓兔子的更多相关文章

  1. 【洛谷4001】 [ICPC-Beijing 2006]狼抓兔子(最小割)

    传送门 洛谷 Solution 直接跑最小割板子就好了. 代码实现 #include<stdio.h> #include<stdlib.h> #include<strin ...

  2. P4001 [ICPC-Beijing 2006]狼抓兔子

    题目地址:P4001 [ICPC-Beijing 2006]狼抓兔子 平面图 边与边只在顶点相交的图. 对偶图 对于一个平面图,都有其对应的对偶图. 平面图被划分出的每一个区域当作对偶图的一个点: 平 ...

  3. 2021.12.02 P4001 [ICPC-Beijing 2006]狼抓兔子(最小割)

    2021.12.02 P4001 [ICPC-Beijing 2006]狼抓兔子(最小割) https://www.luogu.com.cn/problem/P4001 题意: 把图分成两部分需要的最 ...

  4. 洛谷$P4001\ [ICPC-Beijing 2006]$狼抓兔子 网络流+对偶图

    正解:网络流+对偶图 解题报告: 传送门! $umm$日常看不懂题系列了$kk$.其实就是说,给定一个$n\cdot n$的网格图,求最小割$QwQ$ 然后网格图的话显然是个平面图,又看到数据范围$n ...

  5. P4001-[ICPC-Beijing 2006]狼抓兔子【对偶图】

    正题 题目链接:https://www.luogu.com.cn/problem/P4001 题目大意 给出一个类似于 的网格图,求起点到终点的最小割. 解题思路 最小割直接跑网络流,然后发现\(di ...

  6. 解题:BJOI 2006 狼抓兔子

    题面 可以看出来是最小割,然后你就去求最大流了 这么大的范围就是让你用网络流卡的?咋想的啊=.=??? 建议还是老老实实用 平面图最小割等于其对偶图最短路 这个东西来做吧,虽然这个东西跑的也挺慢的,最 ...

  7. ICPC-Beijing 2006 狼抓兔子

    题目描述 题解: 裸的最小割. 但是最大流跑不过去怎么办? 转变一下,既然最大流是一条左下<->右上的通路,我们可以把图划分为若干区域, 最后找左下到右上的最短路就行了. 代码: #inc ...

  8. [BZOJ 2006] 狼抓兔子

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1001 [算法] 最小割 [代码] #include<bits/stdc++.h ...

  9. BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路

    问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...

随机推荐

  1. SecureCRT中某些命令提示符下按Backspace显示^H的解决方法

    SecureCRT中某些命令提示符下按Backspace显示^H的解决方法 安装了Apache Derby数据库服务器之后,使用ij客户端去连接derby服务端,可是在ij中输入命令的时候,每当输入错 ...

  2. POJ3624(背包问题)

    1.题目链接地址 http://poj.org/problem?id=3624 2.源代码 #include<iostream> using namespace std; #define ...

  3. Spring MVC的配置

    一.添加依赖 <dependency> <groupId>org.springframework</groupId> <artifactId>sprin ...

  4. GROUP BY ROLLUP和CUBE 用法

    ROLLUP和CUBE 用法           Oracle的GROUP BY语句除了最基本的语法外,还支持ROLLUP和CUBE语句. 如果是Group by  ROLLUP(A, B, C)的话 ...

  5. 235D Graph Game

    传送门 题目大意 https://www.luogu.org/problemnew/show/CF235D 分析 我们先考虑它是树的情况 我们设$event(x,y)$表示删除点x是y与x联通这件事对 ...

  6. selenium+phantomjs解析JS

    背景知识: PhantomJS 是一个基于WebKit的服务器端 JavaScript API.它全面支持web而不需浏览器支持,其快速,原生支持各种Web标准: DOM 处理, CSS 选择器, J ...

  7. 关于Pascal(帕斯卡)以及Camel(驼峰)命名法

    小驼峰式命名法(lower camel case): 第一个单字以小写字母开始:第二个单字的首字母大写,例如:firstName.lastName,也被称为Camel命名法. 大驼峰式命名法(uppe ...

  8. [Lua快速了解一下]Lua的控制语句

    -Lua中没有++或者--的骚操作 -while loop sum = num = do sum = sum + num num = num + end print("sum =" ...

  9. OnExit事件 OnChange事件

    procedure TSetParkForm.edtPrePosExit(Sender: TObject); // 焦点移开 或已操作 begin if (G2.RowCount > 0) an ...

  10. 苹果微信内置浏览器cookie

    苹果微信内置浏览器cookie会被自动清掉,但safari不会清除,原因还未找到,解决方法是把前端把数据通过header传到后台