BZOJ4476 JSOI2015送礼物(分数规划+单调队列)
看到这个式子当然先二分答案。得max-min-(j-i+k)ans>=0。
显然max-min相同的情况下所选区间长度越短越好,所以max和min都应该取在边界。那么实际上我们根本不用管端点是否真的是max或min,因为即使不是将他们计入也不会对最终答案造成影响。不妨设右端点是max,则要最大化aj-ai-(j-i)ans=(aj-jans)-(ai-ians),单调队列维护即可。左端点是max同理。
为了防止不存在长度在l~r的这样的区间,先对长度l的区间单调队列暴力跑一次。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 50010
const double eps=1E-;
int T,n,k,l,r,a[N],p[N],q[N];
bool check(double ans)
{
int head=,tail=,head1=,tail1=;
for (int i=;i<=n;i++)
{
while (head<=tail&&p[head]<=i-l) head++;
while (head<=tail&&a[i]>=a[p[tail]]) tail--;
p[++tail]=i;
while (head1<=tail1&&q[head1]<=i-l) head1++;
while (head1<=tail1&&a[i]<=a[q[tail1]]) tail1--;
q[++tail1]=i;
if (i>=l&&a[p[head]]-a[q[head1]]>=(l+k-)*ans) return ;
}
head=,tail=;
for (int i=;i<=n;i++)
{
while (head<=tail&&q[head]<=i-r) head++;
if (i>=l)
{
while (head<=tail&&a[q[tail]]-q[tail]*ans>=a[i-l+]-(i-l+)*ans) tail--;
q[++tail]=i-l+;
if ((a[i]-i*ans)-(a[q[head]]-q[head]*ans)>=k*ans) return ;
}
}
head=,tail=;
for (int i=;i<=n;i++)
{
while (head<=tail&&q[head]<=i-r) head++;
if (i>=l)
{
while (head<=tail&&a[q[tail]]+q[tail]*ans<=a[i-l+]+(i-l+)*ans) tail--;
q[++tail]=i-l+;
if ((a[q[head]]+q[head]*ans)-(a[i]+i*ans)>=k*ans) return ;
}
}
return ;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4476.in","r",stdin);
freopen("bzoj4476.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read(),k=read(),l=read(),r=read();
for (int i=;i<=n;i++) a[i]=read();
double L=,R=,ans;
while (L+eps<=R)
{
double mid=(L+R)/;
if (check(mid)) ans=mid,L=mid+eps;
else R=mid-eps;
}
printf("%.4f\n",ans);
}
return ;
}
BZOJ4476 JSOI2015送礼物(分数规划+单调队列)的更多相关文章
- [BZOJ4476][JSOI2015]送礼物[分数规划+单调队列]
题意 题目链接 分析 分数规划之后可以得到式子:\(max-min-r*mid+l*mid\geq k*mid\) . 贪心选择,肯定区间的端点是极小或者极大值.特殊处理区间长度 \(\leq L\) ...
- 【BZOJ4476】[Jsoi2015]送礼物 分数规划+RMQ
[BZOJ4476][Jsoi2015]送礼物 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物.萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都排成 ...
- BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列
BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的 ...
- P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表
P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...
- [BZOJ4476] [JSOI2015] 送礼物 (01分数规划+ST表)
[BZOJ4476] [JSOI2015] 送礼物 (01分数规划+ST表) 题面 给出n,k,l,r和序列a,要求从a中选一段连续的区间[i,j]出来,使得M(i,j)-m(i,j)/(j-i+k) ...
- BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)
5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 79 Solved: 58[Sub ...
- bzoj4476 [Jsoi2015]送礼物
化简式子 $M>=m+ans*(r-l+k)$ 发现$M,m$确定时,总区间长度越小越好,于是假定右端点为最小值$M+ans*l>=m+ans*r+ans*k$, 右面都确定了,但最大值仍 ...
- 【BZOJ3316】JC loves Mkk 分数规划+单调队列
[BZOJ3316]JC loves Mkk Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整 ...
- 【BZOJ 3316】JC loves Mkk 01分数规划+单调队列
单调栈不断吞入数据维护最值,数据具有单调性但不保证位置为其排名,同时可以按照进入顺序找出临近较值单调队列队列两端均可删除数据但只有队末可以加入数据,仍然不断吞入数据但同时可以额外刨除一些不符合条件的数 ...
随机推荐
- yum仓库客户端搭建和NTP时间同步客户端配置
一.yum仓库客户端搭建 yum源仓库搭建分为服务器端和客户端. 服务端主要提供软件(rpm包)和yumlist.也就是提供yum源的位置.一般是通过http或者ftp提供位置. 客户端的配置:yum ...
- Vue.js中 computed 和 methods 的区别
官方文档中已经有对其的解释了,在这里把我的理解记录一下Vue中的methods.watch.computed computed 的使用场景 HTML模板中的复杂逻辑表达式,为了防止逻辑过重导致不易维护 ...
- Jenkins 添加节点 java web方式
环境说明: 主节点:windows server 从节点:两台linux 1. windows server安装jenkins就不多说了,直接添加节点配置如下 2.全局安全配置,指定确认的端口后,记得 ...
- 三、css篇
#这里强烈推荐一本书<css世界>,css第一书. #上面的层叠顺序得记住. 1.align-items justify-content 是flex(弹性盒模型)必须要会的属性,alig ...
- 【PHP】array_column函数
array_column() 返回输入数组中某个单一列的值. 例子,从记录集中取出 last_name 列: <?php // 表示由数据库返回的可能记录集的数组 $a = array( arr ...
- Java应用:经纬度匹配(geohash加密)
本文采用http://gc.ditu.aliyun.com地址进行经纬度匹配,无数量限制 如果给定经纬度进行geohash加密操作,先解密得到相应gps坐标,具体程序如下所示: import java ...
- python3 练习题100例 (二十七)列表元素改写
题目内容: 输入一个列表alist,要求列表中的每个元素都为正整数且不超过10: 将列表中的奇数变为它的平方,偶数除以2后打印新的列表(新的列表中所有元素仍都为整数). 可以使用以下实现列表alist ...
- Django中的select_related与prefetch_related
Django是一个基于Python的网站开发框架,一个很重要的特点就是Battery Included,简单来说就是包含了常规开发中所需要的一切东西,包括但不限于完整的ORM模型.中间件.会话处理 ...
- 【Keras案例学习】 多层感知机做手写字符分类(mnist_mlp )
from __future__ import print_function # 导入numpy库, numpy是一个常用的科学计算库,优化矩阵的运算 import numpy as np np.ran ...
- windows 10 下的linux子系统用法 -- tmux分屏工具用法
1 激活linux子系统的方法见百度: 2 打开powershell,输入bash启动子系统终端:输入exit退出: 3 输入tmux attach连接会话:ctrl-b+d 返回终端:ctrl-b+ ...