题目描述

G 公司有 n 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等。如何用最少搬运量可以使 n个仓库的库存数量相同。搬运货物时,只能在相邻的仓库之间搬运。

输入输出格式

输入格式:

文件的第 1 行中有 1 个正整数 n ,表示有 n 个仓库。

第 2 行中有 n 个正整数,表示 n 个仓库的库存量。

输出格式:

输出最少搬运量。

输入输出样例

输入样例#1:

5
17 9 14 16 4
输出样例#1:

11

说明

1≤n≤100

Solution:

  本题巨说是一道网络流的题目,可我不知道咋建模啊!

  但是这题,显然更像做过的环形均分纸牌问题,于是贪心直接过了。

  先来讲下普通均分纸牌问题:

    普通均分纸牌问题就是$n$个小朋友排成一列,各自有$a[i]$张牌,每个人只能给相邻的人传递纸牌,问至少需要传递多少张纸牌才能使每个小朋友牌的个数相等。

    设总牌数为$sum$(即$sum=\sum{a[i]}$),则每个人最后会各自有$T=\frac{sum}{n}$张牌,设$g[i]=T-a[i]$,则让前$k$个人牌数相同需要的交换牌数为$\sum_\limits{i=1}^{i\leq k}{|s[i]|}$,其中$s[i]=\sum_\limits{j=1}^{j\leq i}{g[i]}$,可以这样理解,要让前$k$个人牌数相同,要依次让前$1,2,3…k-1$个人牌数相同,多退少补,会与后边的人发生二者之差绝对值的牌数交换。所以移动总牌数$ans=\sum{|s[i]|}$。

  再来讲下本题的环形均分纸牌问题:

    环形均分纸牌问题就是$n$个小朋友围成了一圈(等同于第一人和最后一人相邻),这样的话其实可以同样的处理。

    仔细思考环形均分纸牌问题可以发现一个性质:必定至少有两个相邻的人不需要从别人那里获得纸牌(这是显然的,不妨设这两个人的位置为$i$和$i+1$,则环形序列中必定有满足条件$a[i]\leq T\;\;a[i+1]\geq T$的两个相邻位置,这样$a[i],\;a[i+1]$之间没有交换,$a[i]\leq T$可以从$a[i-1]$获得纸牌,$a[i+1]\geq T$可以把多的纸牌给$a[i+2]$)。

    于是由上面的性质,我们直接破环成链,枚举相邻的不需要交换纸牌的两人(将其分别放在第一和最后一个位置)。

    按开始的序列顺序,像普通均分纸牌一样处理出$s$数组,那么假设枚举的位置为$k$,则类比普通均分纸牌求法,新的$s[i]=|s[i]-s[k]|$(注意$s$为前缀和),于是$ans=\sum{|s[i]-s[k]|}$,我们套用中学数学知识可知当$s[k]$为$s$中位数时,$ans$最小。于是本题就解决了。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
const int N=;
ll n,a[N],sum,s[N];
int main()
{
ios::sync_with_stdio();
cin>>n;
for(int i=;i<=n;i++)cin>>a[i],sum+=a[i];
sum/=n;
for(int i=;i<=n;i++)a[i]-=sum,s[i]=s[i-]+a[i];
sort(s+,s+n+);
sum=;
for(int i=;i<=n;i++)sum+=abs(s[n/+]-s[i]);
cout<<sum;
return ;
}

P4016 负载平衡问题的更多相关文章

  1. 洛谷 P4016负载平衡问题【费用流】题解+AC代码

    洛谷 P4016负载平衡问题 P4014 分配问题[费用流]题解+AC代码 负载平衡问题 题目描述 GG 公司有n个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n ...

  2. P4016 负载平衡问题 网络流

    P4016 负载平衡问题 题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运 ...

  3. P4016 负载平衡问题(最小费用最大流)

    P4016 负载平衡问题 题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬 ...

  4. P4016 负载平衡问题 网络流重温

    P4016 负载平衡问题 这个题目现在第二次做,感觉没有这么简单,可能是我太久没有写这种题目了,基本上都忘记了,所以我连这个是费用流都没有看出来. 有点小伤心,知道是费用流之后,我居然还拆点了. 这个 ...

  5. 洛谷P4016负载平衡

    题目 负载平衡问题是一个比较经典的网络流问题,但是该问题还有一个数学贪心法. 所以做这个题前,其实可以做一下均分纸牌问题. 均分纸牌问题 均分纸牌问题可以说是作为贪心的入门题. 做法 首先我们应当把原 ...

  6. 洛谷 [P4016] 负载平衡问题

    贪心做法 第一眼看见觉得和均分纸牌差不多,然而因为这是环形的,并不能用均分纸牌的方法做,但是均分纸牌的思想仍然适用 首先我们假设平均数为sum1. 那么对于第1个人,我们假设他给第N个人K个糖果, 第 ...

  7. Luogu P4016 负载平衡问题

    传说中的网络流24题之一,我刷的第二题菜. 据说这种东西做完了就可以有质的飞越?不过看着这些Luogu评级就有点蒙蔽. 首先我们看一下题目发现这不是均分纸牌的加强板吗,但是那个环的操作极大地限制了我的 ...

  8. (洛谷P2512||bzoj1045) [HAOI2008]糖果传递 || 洛谷P4016 负载平衡问题 || UVA11300 Spreading the Wealth || (洛谷P3156||bzoj3293) [CQOI2011]分金币

    bzoj1045 洛谷P4016 洛谷P2512 bzoj3293 洛谷P3156 题解:https://www.luogu.org/blog/LittleRewriter/solution-p251 ...

  9. P2512 [HAOI2008]糖果传递&&P3156 [CQOI2011]分金币&&P4016 负载平衡问题

    P2512 [HAOI2008]糖果传递 第一步,当然是把数据减去平均数,然后我们可以得出一串正负不等的数列 我们用sum数组存该数列的前缀和.注意sum[ n ]=0 假设为链,那么可以得出答案为a ...

  10. 洛谷P4016 负载平衡问题(费用流)

    传送门 嗯……完全不会……不过题解似乎讲的挺清楚…… 考虑一下,每一个仓库最终肯定都是平均数,所以数量大于平均数的可以往外运,小于平均数的要从别的地方运进来 考虑建一个超级源$S$和超级汇$T$,并把 ...

随机推荐

  1. angularjs 自定义服务(serive,factory,provder) 以及三者的区别

    1.Serive 服务:通过service方式创建自定义服务,相当于new的一个对象:var s = new myService();,只要把属性和方法添加到this上才可以在controller里调 ...

  2. 吐血分享:QQ群霸屏技术教程2017(问题篇)

    霸屏技术,问题篇后,暂时搁置,尔望后续. 这里针对操作中,经常遇到的问题,做个简单整理. 回忆下,排名流程. 1.建群,品牌产品群,做任何关键词都是品牌产品群,皆因其有独特的优势. 2.拉人,填充群人 ...

  3. Laravel系列之CMS系统学习 — 角色、权限配置【2】

    一.RBAC分析 基于角色的权限访问控制(Role-Based Access Control),这里存在这么几个玩意儿:角色.权限,用户 表:roles.permissions.role_has_pe ...

  4. 糖果 南阳acm589

    糖果 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 topcoder工作室的PIAOYIi超级爱吃糖果,现在他拥有一大堆不同种类的糖果,他准备一口气把它们吃完,可是 ...

  5. 清华大学《C++语言程序设计基础》线上课程笔记01---基础概念与一些注意事项

    使用除法的注意事项 double b = 4.0 * 1/239.0; 因为整数相除结果取整,如果参数写1/239,结果就都是0 浮点数注意事项 浮点数是近似存储,所以不能直接比较两个浮点数的大小, ...

  6. (数据科学学习手札30)朴素贝叶斯分类器的原理详解&Python与R实现

    一.简介 要介绍朴素贝叶斯(naive bayes)分类器,就不得不先介绍贝叶斯决策论的相关理论: 贝叶斯决策论(bayesian decision theory)是概率框架下实施决策的基本方法.对分 ...

  7. DESCRIBEFIELD

    実行時データ型識別.略語は RTTI です.プログラム実行時にデータ型を識別して処理を行う仕組みです.. DESCRIBE FIELD命令を使用 DESCRIBE FIELD命令を使用して.変数のデー ...

  8. python2.7入门---Number(数字)

        今天咱们来简单分享一下关于python中的一种数据类型和操作方法.费话不多说哈,咱们直接来进行实践加理论.首先,我们要知道,Python Number 数据类型用于存储数.数据类型是不允许改变 ...

  9. JENKINS系统的安装部署

    JENKINS 安装使用文档 简介 Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用的是什么平台.这是一个免费的源代码,可以处理任何类型的构建或持续集成,集成Jenkins可 ...

  10. Hystrix入门指南

    Introduction 1.Where does the name come from? hystrix对应的中文名字是“豪猪”,豪猪周身长满了刺,能保护自己不受天敌的伤害,代表了一种防御机制,这与 ...