layout: post

title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

author: "luowentaoaa"

catalog: true

mathjax: true

tags:

- 最短路

- 基础DP

- Dijkstra

- 图论

- 训练指南


Walk Through the Forest UVA - 10917

题意

Jimmy打算每天沿着一条不同的路走,而且,他只能沿着满足如下条件的道路(A,B):存在一条从B出发回家的路径,比所以从A出发回家的路径都短,你的任务是计算有多少条不同的路径

题意

题意就转化成如果终点到i 比到j的路劲短,就连线,然后记忆化搜索就行(这几天这种题做太多次了)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int maxn=1050;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
struct Edge{
int from,to,dist;
};
struct HeapNode{
int d,u;
bool operator <(const HeapNode& rhs)const{
return d>rhs.d;
}
};
struct Dijkstra{
int n,m; ///点数和边数 点编号0~N-1
vector<Edge>edges; ///边列表
vector<int>G[maxn]; ///每个节点出发的边编号
bool done[maxn]; /// 是否已永久标号
int d[maxn]; /// s到各个点的距离
int p[maxn]; /// 最短路中的上一条边 void init(int n){
this->n=n;
for(int i=0;i<n;i++)G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int dist){ ///无向图调用两次
edges.push_back((Edge){from,to,dist});
m=edges.size();
G[from].push_back(m-1);
}
void dijkstra(int s){
priority_queue<HeapNode>Q;
for(int i=0;i<n;i++)d[i]=inf;
d[s]=0;
memset(done,0,sizeof(done));
Q.push((HeapNode){0,s});
while(!Q.empty()){
HeapNode x=Q.top();Q.pop();
int u=x.u;
if(done[u])continue;
done[u]=true;
for(int i=0;i<G[u].size();i++){
Edge& e=edges[G[u][i]];
if(d[e.to]>d[u]+e.dist){
d[e.to]=d[u]+e.dist;
p[e.to]=G[u][i];
Q.push((HeapNode){d[e.to],e.to});
}
}
}
}
/// dist[i]为s到i的距离,paths[i]为s到i的最短路径(经过的结点列表,包括s和t)
void GetShortestPaths(int s,int* dist,vector<int>* paths){///paths是二维链表
dijkstra(s);
for(int i=0;i<n;i++){
dist[i]=d[i];
paths[i].clear();
int t=i;
paths[i].push_back(t);
while(t!=s){
paths[i].push_back(edges[p[t]].from);
t=edges[p[t]].from;
}
reverse(paths[i].begin(),paths[i].end());
}
}
}; Dijkstra solver;
int d[maxn];
int dp(int u){
if(u==1)return 1;
int &ans=d[u];
if(ans>=0)return ans;
ans=0;
for(int i=0;i<solver.G[u].size();i++){
int v=solver.edges[solver.G[u][i]].to;
if(solver.d[v]<solver.d[u])ans+=dp(v);
}
return ans;
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int n,m;
while(cin>>n){
if(n==0)break;
cin>>m;
solver.init(n);
for(int i=0;i<m;i++){
int a,b,c;
cin>>a>>b>>c;a--;b--;
solver.AddEdge(a,b,c);
solver.AddEdge(b,a,c);
}
solver.dijkstra(1);
memset(d,-1,sizeof(d));
cout<<dp(0)<<endl;
}
return 0;
}

训练指南 UVA - 10917(最短路Dijkstra + 基础DP)的更多相关文章

  1. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

  2. 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)

    layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...

  3. 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)

    layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...

  4. 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)

    layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...

  5. 训练指南 UVA - 11419(二分图最小覆盖数)

    layout: post title: 训练指南 UVA - 11419(二分图最小覆盖数) author: "luowentaoaa" catalog: true mathjax ...

  6. 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y))

    layout: post title: 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y)) author: "luowentaoaa" cata ...

  7. 训练指南 UVA - 11354(最小生成树 + 倍增LCA)

    layout: post title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA) author: "luowentaoaa" catalog: true ma ...

  8. 算法竞赛入门经典训练指南——UVA 11300 preading the Wealth

    A Communist regime is trying to redistribute wealth in a village. They have have decided to sit ever ...

  9. uva 10917 最短路+dp

    https://vjudge.net/problem/UVA-10917 给出N点M边的无向图,没重边.对于点A,B,当且仅当从B到终点的最短路小于任何一条从A到终点的最短路时,才考虑从A走到B,否则 ...

随机推荐

  1. LeetCode -- Linked List Circle ii

    Question: Given a linked list, return the node where the cycle begins. If there is no cycle, return  ...

  2. 洛谷 P2168 [NOI2015]荷马史诗 解题报告

    P2168 [NOI2015]荷马史诗 题目描述 追逐影子的人,自己就是影子 --荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷 ...

  3. codeforces 1015A

    A. Points in Segments time limit per test 1 second memory limit per test 256 megabytes input standar ...

  4. nodejs npm insttall 带不带-g这个参数的区别

    -g 中的g是global的意思所以带-g这个参数是全局安装,不带-g这个参数是本地安装. 在windows系统中全局安装的目录在:C:\Users\linsenq\AppData\Roaming\n ...

  5. CSS中的text-shadow。

    text-shadow(文字投影),box-shadow(容器投影),border-radius(圆角)这三个属性估计以后用的比较多,记录 一下.目前不支持IE系列(不过可以使用其他方法实现,下文有详 ...

  6. 设置eclipse控制台上的信息输入到某个文件

    转摘自:http://binary.duapp.com/2013/09/1511.html Run->Run Configurations->Common->File

  7. NET面试题 (四)

    1, 面向对象的思想主要包括什么? 封装.继承.多态. TLW: 封装:用抽象的数据类型将数据和基于数据的操作封装在一起,数据被保护在抽象数据类型内部. 继承:子类拥有父类的所有数据和操作. 多态:一 ...

  8. es6+最佳入门实践(9)

    9.Iterator和for...of 9.1.Iterator是什么? Iterator又叫做迭代器,它是一种接口,为各种不同的数据结构提供统一的访问机制.这里说的接口可以形象的理解为USB接口,有 ...

  9. Idea 部署非Maven项目

    参考:http://m.blog.csdn.net/z69183787/article/details/78030857 以前一直很好奇,在idea中运行tomcat,把项目部署到其中,运行起来,然后 ...

  10. 【BZOJ2330】【SCOI2011】糖果 [差分约束]

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 幼儿园 ...