作者:吴乐  山东师范大学

《Linux内核分析》 孟宁 MOOC课程http://mooc.study.163.com/course/USTC-1000029000

一、程序设计与分析

mymain.c编写如下,参考了孟宁老师的设计。

/*
* linux/mykernel/mymain.c
*
* Kernel internal my_start_kernel
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h> #include "mypcb.h" tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = ; void my_process(void); void __init my_start_kernel(void)
{
int pid = ;
int i;
/* Initialize process 0*/
task[pid].pid = pid;
task[pid].state = ;/* -1 unrunnable, 0 runnable, >0 stopped */
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-];
task[pid].next = &task[pid];
/*fork more process */
for(i=;i<MAX_TASK_NUM;i++)
{
memcpy(&task[i],&task[],sizeof(tPCB));
task[i].pid = i;
task[i].state = -;
task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-];
task[i].next = task[i-].next;
task[i-].next = &task[i];
}
/* start process 0 by task[0] */
pid = ;
my_current_task = &task[pid];
asm volatile(
"movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */
"pushl %1\n\t" /* push ebp */
"pushl %0\n\t" /* push task[pid].thread.ip */
"ret\n\t" /* pop task[pid].thread.ip to eip */
"popl %%ebp\n\t"
:
: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/
);
}
void my_process(void)
{
int i = ;
while()
{
i++;
if(i% == )
{
printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
if(my_need_sched == )
{
my_need_sched = ;
my_schedule();
}
printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
}
}
}

这是我们模拟kernel的主程序mymain.c/

linux启动后,系统初始化完成,mymain.c开始运行。

通过将my_process的地址传入结构体中的ip,再将ip压栈后ret,将地址pop给eip,将系统引导至myprocess开始运行。

其中while1,保证kernel死循环。

每执行10000000次检查全局变量my_need_sche,通过my_schedule()来进行进程的切换。

而对于my_need_sche的修改和my_schedule()函数具体的实现是在时钟中断中模拟进行的。

my_schedule()函数的代码如下:

contributor
RawBlameHistory lines ( sloc) 2.452 kb
/*
* linux/mykernel/myinterrupt.c
*
* Kernel internal my_timer_handler
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = ; /*
* Called by timer interrupt.
* it runs in the name of current running process,
* so it use kernel stack of current running process
*/
void my_timer_handler(void)
{
#if 1
if(time_count% == && my_need_sched != )
{
printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
my_need_sched = ;
}
time_count ++ ;
#endif
return;
} void my_schedule(void)
{
tPCB * next;
tPCB * prev; if(my_current_task == NULL
|| my_current_task->next == NULL)
{
return;
}
printk(KERN_NOTICE ">>>my_schedule<<<\n");
/* schedule */
next = my_current_task->next;
prev = my_current_task;
if(next->state == )/* -1 unrunnable, 0 runnable, >0 stopped */
{
/* switch to next process */
asm volatile(
"pushl %%ebp\n\t" /* save ebp */
"movl %%esp,%0\n\t" /* save esp */
"movl %2,%%esp\n\t" /* restore esp */
"movl $1f,%1\n\t" /* save eip */
"pushl %3\n\t"
"ret\n\t" /* restore eip */
"1:\t" /* next process start here */
"popl %%ebp\n\t"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
}
else
{
next->state = ;
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
/* switch to new process */
asm volatile(
"pushl %%ebp\n\t" /* save ebp */
"movl %%esp,%0\n\t" /* save esp */
"movl %2,%%esp\n\t" /* restore esp */
"movl %2,%%ebp\n\t" /* restore ebp */
"movl $1f,%1\n\t" /* save eip */
"pushl %3\n\t"
"ret\n\t" /* restore eip */
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
return;
}

我们看到,每一千次中断,就模拟切换一次进程。

通过对当前环境的保存以及建立新的堆栈,来完成对进程的切换。

二、实验结果

三、操作系统是如何工作的:

操作系统工作的核心概念是进程,进程是程序的动态执行。大部分的操作系统都有自己的核心进程,系统启动完成最后的操作就是启动核心进程,然后其他的所有执行程序其实都是这个进程的子子孙孙,而这个核心进程可以控制子子孙孙间同步执行和进程切换以及终止子进程,少量指令足以找到更多指令,后者依次再找到更多的指令。操作系统运行起来之后,它就会转而执行一个简单循环,依次把控制权交给准备运行或需要关注的每个应用程序。操作系统会让 CPU 依次处理这些进程,并根据需要在它们之间切换。每个程序会得到一段极短的时间,在程序请求系统服务后或者分配给它的时间用完时结束,操作系统会响应各种事件,比如音乐结束、邮件或网页到达,或者用户按下了键盘上的按键。对这些事件,操作系统都会作出必要的处理,通常是把相应的事件转发给相关的应用程序。

通过简单的Linux内核启动程序代码窥探操作系统的启动原理的更多相关文章

  1. 通过从代码层面分析Linux内核启动来探知操作系统的启动过程

    通过从代码层面分析Linux内核启动来探知操作系统的启动过程 前言说明 本篇为网易云课堂Linux内核分析课程的第三周作业,我将围绕Linux 3.18的内核中的start_kernel到init进程 ...

  2. 构造一个简单的Linux内核的MenuOS

    构造一个简单的Linux内核的MenuOS 20135109 高艺桐 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000 ...

  3. Linux上java程序的jar包启动通用脚本(稳定用过)

    Linux上java程序的jar包启动通用脚本如下: #! /bin/sh export LANG="zh_CN.GBK" SERVICE_NAME=` .sh` SCRIPT_N ...

  4. linux内核中链表代码分析---list.h头文件分析(一)【转】

    转自:http://blog.chinaunix.net/uid-30254565-id-5637596.html linux内核中链表代码分析---list.h头文件分析(一) 16年2月27日17 ...

  5. linux内核中链表代码分析---list.h头文件分析(二)【转】

    转自:http://blog.chinaunix.net/uid-30254565-id-5637598.html linux内核中链表代码分析---list.h头文件分析(二) 16年2月28日16 ...

  6. Linux内核0.11代码阅读(转)

    最近决定开始阅读Linux 0.11的源代码. 学习Linux操作系统的核心概念最好的方法莫过于阅读源代码.而Linux当前最新的源代码包已经有70MB左右,代码十分庞大,要想深入阅读十分困难.而Li ...

  7. 简单了解linux内核

    linux内核是单块结构Linux能动态的按需装载或卸载模块Linux内核线程以一种十分受限制的方式来周期性地执行几个内核函数,因为linux内核线程不能执行用户程序,因此,她们并不代表基本的可执行上 ...

  8. Linux内核分析——汇编代码执行及堆栈变化

    张潇月<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.实验步骤 首先借助实验楼这个平台进入Linux ...

  9. linux内核开发程序风格

    变量命名法 这里是linux不是windows,所以匈牙利命名法是不允许使用的,在内核中,局部变量只要可以明确表达自己的意思,可以使用idx,i这种名字的id, 全局函数和变量需要有表达性的名字例如g ...

随机推荐

  1. lintcode:在二叉查找树中插入节点

    题目:  在二叉查找树中插入节点 给定一棵二叉查找树和一个新的树节点,将节点插入到树中. 你需要保证该树仍然是一棵二叉查找树.  样例 给出如下一棵二叉查找树,在插入节点6之后这棵二叉查找树可以是这样 ...

  2. ASP.Net WebForm学习笔记:一、aspx与服务器控件探秘

    作者:周旭龙 出处:http://edisonchou.cnblogs.com 开篇:毫无疑问,ASP.Net WebForm是微软推出的一个跨时代的Web开发模式,它将WinForm开发模式的快捷便 ...

  3. 【Linux高频命令专题(7)】rm

    简述 rm是常用的命令,该命令的功能为删除一个目录中的一个或多个文件或目录,它也可以将某个目录及其下的所有文件及子目录均删除.对于链接文件,只是删除了链接,原有文件均保持不变. 命令格式 rm [选项 ...

  4. git的学习网站

    git官网:http://git-scm.com/ http://gitref.org/index.html http://edu.51cto.com/lesson/id-33751.html     ...

  5. posix 线程(一):线程模型、pthread 系列函数 和 简单多线程服务器端程序

    posix 线程(一):线程模型.pthread 系列函数 和 简单多线程服务器端程序 一.线程有3种模型,分别是N:1用户线程模型,1:1核心线程模型和N:M混合线程模型,posix thread属 ...

  6. ubuntu下显卡管理

    1 Ubuntu下卸载ATI显卡驱动并还原开源驱动[转] 首先卸载已经安装的ATI显卡驱动:cd /usr/share/ati/sudo ./fglrx-uninstall.sh 接着执行下面的代码: ...

  7. Shell 是个什么玩意

    Shell的定义: 计算机分为软件和硬件,管理计算机硬件的是操作系统,也就是我们说的kernel,而这个核心是需要被保护起来的. 那我们如何通过软件与硬件进行沟通,让硬件执行我们要完成的指令呢? 这个 ...

  8. Android 动态改变布局属性RelativeLayout.LayoutParams.addRule()

    我们知道,在 RelativeLayout 布局中有很多特殊的属性,通常在载入布局之前,在相关的xml文件中进行静态设置即可. 但是,在有些情况下,我们需要动态设置布局的属性,在不同的条件下设置不同的 ...

  9. 虚函数(virtual)为啥不能是static

    静态成员函数,可以不通过对象来调用,即没有隐藏的this指针. virtual函数一定要通过对象来调用,即有隐藏的this指针. static成员没有this指针是关键!static function ...

  10. Java API —— 递归

    1.方法定义中调用方法本身的现象 2.递归注意实现         1) 要有出口,否则就是死递归         2) 次数不能太多,否则就内存溢出         3) 构造方法不能递归使用 3. ...