poj 3241 Object Clustering (曼哈顿最小生成树)
| Time Limit: 2000MS | Memory Limit: 131072K | |
| Total Submissions: 2640 | Accepted: 806 |
Description
We have N (N ≤ 10000) objects, and wish to classify them into several groups by judgement of their resemblance. To simply the model, each object has 2 indexes a and b (a, b ≤ 500). The resemblance of object i and object j is defined by dij = |ai - aj| + |bi - bj|, and then we say i is dij resemble to j. Now we want to find the minimum value of X, so that we can classify the Nobjects into K (K < N) groups, and in each group, one object is at most X resemble to another object in the same group, i.e, for every object i, if i is not the only member of the group, then there exists one object j (i ≠ j) in the same group that satisfies dij ≤ X
Input
The first line contains two integers N and K. The following N lines each contain two integers a and b, which describe a object.
Output
A single line contains the minimum X.
Sample Input
6 2
1 2
2 3
2 2
3 4
4 3
3 1
Sample Output
2
题目大意:
(在平面坐标第一象限)给你n个整点,A(x1,y1)和B(x2,y2)两点之间的距离定义为|x1-x2|+|y1-y2|,求最小生成树第k大边。
曼哈顿最小生成树经典题。
首先这道题条件给的不充分啊:点都在第一象限(不包括坐标轴),没有重(chong)点。
大致理一下思路:
首先,如果将点两两相连,边数是O(n^2)的。但并非所有的边都有用。网上有很多相关的证明,可以证得,只需对一二象限均分的四个部分分别求最近的点加边。
其次,怎么处理呢。先考虑y轴左偏45度的那一块。先对y-x离散化,再对x排序(排序函数要注意,因为要把边界算上),这样每次查询y-x和x比当前点大的点中最小值就好了(用线段树)。这一块实现起来确实比较麻烦,详见代码。
再次,其余三个部分通过坐标变换就可以套用第一部分的处理方式了。(x,y)(y,x)(-y,x)(x,-y)。
最后,跑个kruskal就ok了。
#include<cstdio>
#include<algorithm> using namespace std; const int maxn=;
const int inf=; struct tdot
{
int x,y;
int num;//每个点的序号
int dis;//离散化后的值
};
tdot dot[maxn+]; //x
int cmp1(tdot a,tdot b)
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
} //y-x
int cmp2(tdot a,tdot b)
{
if(a.y-a.x==b.y-b.x)
return a.x<b.x;
return a.y-a.x<b.y-b.x;
} //离散化及预处理
void discrete(int n)
{
sort(dot+,dot+n+,cmp2);
for(int i=;i<=n;i++)
dot[i].dis=i;
sort(dot+,dot+n+,cmp1);
} struct ttree
{
int l,r;
int num;
int mmin;
};
ttree tree[maxn*+]; void pushup(int x)
{
if(tree[x].l==tree[x].r)
return;
if(tree[x*].mmin<=tree[x*+].mmin)
tree[x].mmin=tree[x*].mmin,tree[x].num=tree[x*].num;
else
tree[x].mmin=tree[x*+].mmin,tree[x].num=tree[x*+].num;
} void build(int x,int l,int r)
{
tree[x].l=l;tree[x].r=r;
tree[x].mmin=inf;
tree[x].num=;
if(l<r)
{
int mid=(l+r)/;
build(x*,l,mid);
build(x*+,mid+,r);
}
} void modify(int x,int pos,int mmin,int num)
{
if(tree[x].l==tree[x].r)
tree[x].mmin=mmin,tree[x].num=num;
else
{
int mid=(tree[x].l+tree[x].r)/;
if(pos<=mid)
modify(x*,pos,mmin,num);
else
modify(x*+,pos,mmin,num);
pushup(x);
}
} struct tret
{
int mmin,num;
}; tret query(int x,int l,int r)
{
tret ret;
ret.mmin=inf;ret.num=;
if(l<=tree[x].l&&r>=tree[x].r)
{
ret.mmin=tree[x].mmin;
ret.num=tree[x].num;
return ret;
}
int mid=(tree[x].l+tree[x].r)/;
if(l<=mid)
{
tret ret0=query(x*,l,r);
if(ret.mmin>ret0.mmin)
ret.mmin=ret0.mmin,ret.num=ret0.num;
}
if(r>mid)
{
tret ret0=query(x*+,l,r);
if(ret.mmin>ret0.mmin)
ret.mmin=ret0.mmin,ret.num=ret0.num;
}
return ret;
} struct tedge
{
int a,b;
int w;
};
tedge edge[maxn*+];
int cnt=; //加边
void addedge(int n)
{
build(,,n);
for(int i=n;i>=;i--)
{
tret ret=query(,dot[i].dis,n);
if(ret.num!=)
{
edge[cnt].a=dot[i].num;
edge[cnt].b=ret.num;
edge[cnt++].w=ret.mmin-dot[i].x-dot[i].y;
}
modify(,dot[i].dis,dot[i].x+dot[i].y,dot[i].num);
}
} //kruskal用比较函数
int cmp(tedge a,tedge b)
{
return a.w<b.w;
} int fa[maxn+]; int father(int x)
{
if(fa[x]==x)
return x;
return fa[x]=father(fa[x]);
} int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
{
scanf("%d%d",&dot[i].x,&dot[i].y);
dot[i].num=i;
} discrete(n);
addedge(n); for(int i=;i<=n;i++)
swap(dot[i].x,dot[i].y);
discrete(n);
addedge(n); for(int i=;i<=n;i++)
dot[i].x*=-;
discrete(n);
addedge(n); for(int i=;i<=n;i++)
swap(dot[i].x,dot[i].y);
discrete(n);
addedge(n); //kruskal
for(int i=;i<=n;i++)
fa[i]=i;
sort(edge+,edge+cnt,cmp);
for(int i=,j=;i<cnt;i++)
{
int fx=father(edge[i].a);
int fy=father(edge[i].b);
if(fx!=fy)
{
fa[fx]=fy;
j++;
}
if(j==n-k)
{
printf("%d\n",edge[i].w);
break;
}
} return ;
}
PS:看别人的解题报告只是一种学习的途径。代码的实现还是要靠自己写。这两者的深度是大不相同的,有些东西只有在自己写代码的时候才能体会到。这道题前前后后写了三遍,终于过了,开心。
poj 3241 Object Clustering (曼哈顿最小生成树)的更多相关文章
- POJ 3241 Object Clustering 曼哈顿最小生成树
Object Clustering Description We have N (N ≤ 10000) objects, and wish to classify them into severa ...
- POJ3241 Object Clustering 曼哈顿最小生成树
题意:转换一下就是求曼哈顿最小生成树的第n-k条边 参考:莫涛大神的论文<平面点曼哈顿最小生成树> /* Problem: 3241 User: 96655 Memory: 920K Ti ...
- POJ 3241 Object Clustering(Manhattan MST)
题目链接:http://poj.org/problem?id=3241 Description We have N (N ≤ 10000) objects, and wish to classify ...
- 【POJ 3241】Object Clustering 曼哈顿距离最小生成树
http://poj.org/problem?id=3241 曼哈顿距离最小生成树模板题. 核心思想是把坐标系转3次,以及以横坐标为第一关键字,纵坐标为第二关键字排序后,从后往前扫.扫完一个点就把它插 ...
- POJ3241 Object Clustering(最小生成树)题解
题意:求最小生成树第K大的边权值 思路: 如果暴力加边再用Kruskal,边太多会超时.这里用一个算法来减少有效边的加入. 边权值为点间曼哈顿距离,那么每个点的有效加边选择应该是和他最近的4个象限方向 ...
- POJ 3241Object Clustering曼哈顿距离最小生成树
Object Clustering Description We have N (N ≤ 10000) objects, and wish to classify them into several ...
- 【Poj3241】Object Clustering
Position: http://poj.org/problem?id=3241 List Poj3241 Object Clustering List Description Knowledge S ...
- 【poj3241】 Object Clustering
http://poj.org/problem?id=3241 (题目链接) MD被坑了,看到博客里面说莫队要写曼哈顿最小生成树,我就写了一个下午..结果根本没什么关系.不过还是把博客写了吧. 转自:h ...
- 【BZOJ-2177】曼哈顿最小生成树 Kruskal + 树状数组
2177: 曼哈顿最小生成树 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 190 Solved: 77[Submit][Status][Discu ...
随机推荐
- python requirements.txt的创建及使用
要求文件(requirements.txt)是安装包的依赖项及版本的记录文件. pip: 创建 (venv) $ pip freeze >requirements.txt 使用 (venv) $ ...
- 阅读《Windows 黑客编程技术详解》(甘迪文著)【正在进行】
内容提要: 本书介绍的是黑客编程的基础技术,涉及用户层下的Windows编程和内核层下的Rootkit编程. 全书大纲: 第一篇 用户篇 平常计算机上使用的应用程序,都运行在用户层上,属于用户程序.在 ...
- electron——dialog(实现导出excel)
背景 前端点击导出excel按钮后,请求完需要导出的数据后发送给主进程electron,由主进程保存到本地 dialog 显示用于打开和保存文件.警报等的本机系统对话框. dialog 模块提供了ap ...
- Alibaba Nacos 学习(三):Spring Cloud Nacos Discovery - FeignClient,Nacos 服务注册与发现
Alibaba Nacos 学习(一):Nacos介绍与安装 Alibaba Nacos 学习(二):Spring Cloud Nacos Config Alibaba Nacos 学习(三):Spr ...
- 扛把子组final week 1/1 Scrum立会报告+燃尽图 01
此作业的要求参见http://edu.cnblogs.com/campus/nenu/2019fall/homework/10065 一.小组情况 队名:扛把子 组长:孙晓宇 组员:宋晓丽 梁梦瑶 韩 ...
- 复习-java集合简记
1.集合概述 ava集合类存放于 java.util 包中,是一个用来存放对象的容器. 集合只能保存对象(实际上也是保存对象的引用变量),Java主要由两个接口派生而出:Collection和Map, ...
- 菜鸟系列Fabric源码学习 — peer节点启动
Fabric 1.4 源码分析peer节点启动 peer模块采用cobra库来实现cli命令. Cobra提供简单的接口来创建强大的现代化CLI接口,比如git与go工具.Cobra同时也是一个程序, ...
- 封装一个适用于vue的 jsonp
import originJsonp from 'jsonp' export default function jsonp(url, data, option) { return new Promis ...
- spring cloud 之 -- eureka vs consul,该选择谁?
0--前言 spring cloud的服务注册中心,该选择谁?在选择前,我们首先需要来了解下分布式的CAP定理: 所谓CAP,是指: Consistency:一致性:就是在分布式系统中的所有数据备份, ...
- hybrid app初体验,和react-native一起飞
第一次启动了react-native的示例,今天主要把其中遇到的坑与解决的办法分享给大家.如有疏漏.错误还望指正. 首先还是要从hybrid app这个概念说起(如果对于这个过程不感兴趣的同学,可以直 ...