这题的时候发现题解里有提到\(generalizations\ of\ Cayley's\ formula\)的,当场懵逼,Wikipedia里也就带到了一下,没有解释怎么来的,然后下面贴了篇论文

大概就是\(n\)个点\(k\)个联通块的森林,\(1,2,\cdots,k\)属于不同的联通块,这样不同的方案数共有\(k\cdot n^{n-k-1}\)种。

我自己用\(Prüfer\)序列脑补了半天没搞懂怎么来的,始终觉得感性理解是\(n^{n-k}\),然后就去看了下那个证明。

用\(F(n,k)\)表示那个方案数(\(n,k\)与前面意义相同),我们要证明
\[F(n,k)=k\cdot n^{n-k-1} \;\;\;\;\;\;(1)\]
证明基于下面这个公式,若\(n>1\)且\(1 \leq k \leq n\)则
\[F(n,k)=\sum_{j=0}^{n-k} {n-k \choose j} F(n-1,k+j-1) \;\;\;\;\;\;(2)\]
其中\(F(1,1)=1,F(n,0)=0(n \geq 1)\)
要证明上面的递推式,考虑一个\(n\)个点\(k\)个联通块,\(1,2,\cdots,k\)属于不同的联通块的森林,在这个森林中,一号节点可能和\(\{k+1,k+2,\cdots,n\}\)的任何子集相连,假设连了\(j\)个点,那么方案数就是\(n-k \choose j\),然后删掉一号点,此时有\(n-1\)个点,\(k+j-1\)个联通块,我们枚举\(j\),就得到了上面的式子。

再用一下数学归纳法就可以把(2)式变成(1)式了
当\(n=1\)时,两式显然相等
当\(n>1\)时,若\(F(n-1,i)=i \cdot (n-1)^{n-i-2}\),则由(2)可得
\[F(n,i)=\sum_{j=0}^{n-i} {n-i \choose j}(i+j-1)(n-1)^{n-i-j-1}=i \cdot n^{n-i-1}\;\;\;\;(3)\]
用一下二项式定理就行。


博主有话说:不得不承认这篇博文是烂尾,毕竟还不是很懂二项式定理QAQ,但感觉这个证明还挺精巧的。

Codeforces 1109D: generalizations of Cayley's formula证明的更多相关文章

  1. Prufer codes与Generalized Cayley's Formula学习笔记

    \(Prufer\)序列 在一棵\(n\)个点带标号无根树里,我们定义这棵树的\(Prufer\)序列为执行以下操作后得到的序列 1.若当前树中只剩下两个节点,退出,否则执行\(2\) 2.令\(u\ ...

  2. Prufer codes与Generalized Cayley's Formula

    Prufer序列 在一棵n个节点带标号树中,我们认为度数为1的点为叶子.n个点的树的Prufer序列是经过下面流程得到的一个长度为n-2的序列. 1.若当前树中只剩下两个点,退出,否则执行2. 2.找 ...

  3. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory

    Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...

  4. Codeforces Round #801 (Div. 2) C(规律证明)

    Codeforces Round #801 (Div. 2) C(规律证明) 题目链接: 传送门QAQ 题意: 给定一个\(n * m\)的矩阵,矩阵的每个单元的值为1或-1,问从\((1,1)\)开 ...

  5. Codeforces Gym 100610 Problem E. Explicit Formula 水题

    Problem E. Explicit Formula Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10 ...

  6. codeforces 1269D. Domino for Young (二分图证明/结论题)

    链接:https://codeforces.com/contest/1269/problem/D 题意:给一个不规则的网格,在上面放置多米诺骨牌,多米诺骨牌长度要么是1x2,要么是2x1大小,问最多放 ...

  7. Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 排列组合,Prufer编码

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109D.html 题意 所有边权都是 [1,m] 中的整数的所有 n 个点的树中,点 a 到点 b 的距离 ...

  8. Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学

    Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就 ...

  9. Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)

    大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...

随机推荐

  1. js常用Matn函数的操练

    Math.PI console.log(Math.PI); 随机数以及向下取整 这是一个能实现从a-b之间随机打印一个整数 function rand_s(a, b) { var x = a + (b ...

  2. node.js操作数据库之MongoDB+mongoose篇

    前言 node.js的出现,使得用前端语法(javascript)开发后台服务成为可能,越来越多的前端因此因此接触后端,甚至转向全栈发展.后端开发少不了数据库的操作.MongoDB是一个基于分布式文件 ...

  3. Spring Boot (十二): Spring Boot 邮件服务

    最早我们发邮件的时候是使用 JavaMail 来发送邮件,而在 Spring Boot 中, Spring Boot 帮我们将 JavaMail 封装好了,是可以直接拿来使用的. 1. 依赖文件 po ...

  4. 【CV现状-3.3】特征提取与描述

    #磨染的初心--计算机视觉的现状 [这一系列文章是关于计算机视觉的反思,希望能引起一些人的共鸣.可以随意传播,随意喷.所涉及的内容过多,将按如下内容划分章节.已经完成的会逐渐加上链接.] 缘起 三维感 ...

  5. 智慧金融时代,大数据和AI如何为业务赋能

    前言:宜信技术人物专访是宜信技术学院推出的系列性专题,我们邀请软件研发行业的优秀技术人,分享自己在软件研发领域的实践经验和前瞻性观点. 第一期专访我们邀请到宜信科技中心AI中台负责人王东老师,从大数据 ...

  6. dp复习 背包[礼物]

    [问题描述]人生赢家老王在网上认识了一个妹纸,然后妹纸的生日到了,为了表示自己的心意,他决定送她礼物.可是她喜爱的东西特别多,然而他的钱数有限,因此他想知道当他花一定钱数后剩余钱数无法再购买任何一件剩 ...

  7. webstrom 永久激活方法 ,长期可用

    打开hosts文件:C:\Windows\System32\drivers\etc 在最后一行添加 0.0.0.0 account.jetbrains.com 打开webstorm,选择Activat ...

  8. java高并发----个人学习理解汇总记录

    1.首先,需要理解几个概念 1.同步(Synchronous):同步方法调用一旦开始,调用者必须等到前面的方法调用返回后,才能继续后续的行为,依次直到完成所有. 2.异步(Asynchronous): ...

  9. Halcon一日一练:图像采集设备的基本参数

    因操作图像处理之前,需要对图像进行采集.采集图像,我们首先要确定的是图像的像素和采集的效率.这些都需要对设备进行配置与操作.现实情况是图像设备有各自不同的采集方式,配置也各不相同.这就需要设备提供商提 ...

  10. webpack 打包 todolist 应用

    写在前面的话:  一直想着手动配置webpack实现应用,正好最近这段时间比较空闲,就写了一个通过webpack打包实现todolist的简单应用.本文内容包括:通过webpack打包css,html ...