After you had helped Fedor to find friends in the «Call of Soldiers 3» game, he stopped studying completely. Today, the English teacher told him to prepare an essay. Fedor didn't want to prepare the essay, so he asked Alex for help. Alex came to help and wrote the essay for Fedor. But Fedor didn't like the essay at all. Now Fedor is going to change the essay using the synonym dictionary of the English language.

Fedor does not want to change the meaning of the essay. So the only change he would do: change a word from essay to one of its synonyms, basing on a replacement rule from the dictionary. Fedor may perform this operation any number of times.

As a result, Fedor wants to get an essay which contains as little letters «R» (the case doesn't matter) as possible. If there are multiple essays with minimum number of «R»s he wants to get the one with minimum length (length of essay is the sum of the lengths of all the words in it). Help Fedor get the required essay.

Please note that in this problem the case of letters doesn't matter. For example, if the synonym dictionary says that word cat can be replaced with word DOG, then it is allowed to replace the word Cat with the word doG.

Input

The first line contains a single integer m (1 ≤ m ≤ 105) — the number of words in the initial essay. The second line contains words of the essay. The words are separated by a single space. It is guaranteed that the total length of the words won't exceed 105 characters.

The next line contains a single integer n (0 ≤ n ≤ 105) — the number of pairs of words in synonym dictionary. The i-th of the next n lines contains two space-separated non-empty words xi and yi. They mean that word xi can be replaced with word yi (but not vise versa). It is guaranteed that the total length of all pairs of synonyms doesn't exceed 5·105 characters.

All the words at input can only consist of uppercase and lowercase letters of the English alphabet.

Output

Print two integers — the minimum number of letters «R» in an optimal essay and the minimum length of an optimal essay.

输入输出样例

输入样例#1:

3
AbRb r Zz
4
xR abRb
aA xr
zz Z
xr y
输出样例#1:

2 6
输入样例#2:

2
RuruRu fedya
1
ruruRU fedor
输出样例#2:

1 10


十分气愤!!!
不懂为什么他们机房互模成瘾,实在忍不了。 我太菜了,这么水的题都想不出来...
Noip怕是凉了。
首先我们可以把每个出现的字符串当做一个点,把转化关系当做边。
用一个pair类型存储每个字符串的$r$的个数和长度。
然后贪心地想,我们肯定是要让尽可能多的字符串有尽量少的r和尽量少的长度。
把所有字符串放进队列里bfs,类似spfa,如果能更新的话就再次入队。
最后所有更新完之后的1——n的r的个数和长度一定是最短的。
还要注意字符串会有重复,比较坑。
总之我太菜了。

 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cstdlib>
#include <queue>
#include <map>
#include <vector>
using namespace std;
#define reg register
inline char gc() {
static const int BS = << ;
static unsigned char Buf[BS], *st, *ed;
if (st == ed) ed = Buf + fread(st = Buf, , BS, stdin);
return st == ed ? EOF : *st++;
}
#define gc getchar
inline int read() {
int res=;char ch=getchar();bool fu=;
while(!isdigit(ch)) {if(ch=='-')fu=;ch=getchar();}
while(isdigit(ch))res=(res<<)+(res<<)+(ch^), ch=getchar();
return fu?-res:res;
}
#define ll long long
#define pii pair <ll, ll>
#define mkp make_pair
int n, m;
map <string, int> mp;
int tot;
pii memc[];
vector <int> ve[];
ll ans1, ans2;
int cp[]; inline void down(string &s)
{
int len = s.length();
for (reg int i = ; i < len ; i ++)
if (s[i] >= 'A' and s[i] <= 'Z') s[i] = s[i] - 'A' + 'a';
} inline void add(string &s)
{
int len = s.length();
down(s);
ll cnt = ;
for (reg int i = ; i < len ; i ++)
if (s[i] == 'r') cnt++;
if (mp.find(s) == mp.end()) {
mp[s] = ++tot;
memc[tot] = mkp(cnt, len);
}
} int main()
{
n = read();
for (reg int i = ; i <= n ; i ++)
{
string s;
cin >> s;
add(s);
cp[i] = mp[s];
}
m = read();
for (reg int i = ; i <= m ; i ++)
{
string s1, s2;
cin >> s1 >> s2;
add(s1), add(s2);
ve[mp[s2]].push_back(mp[s1]);
}
queue <int> q;
for (reg int i = ; i <= tot ; i ++) q.push(i);
while (!q.empty())
{
int x = q.front();q.pop();
for (reg int i = ; i < ve[x].size() ; i ++)
{
int to = ve[x][i];
if (memc[to] > memc[x]) {
memc[to] = memc[x];
q.push(to);
}
}
}
for (reg int i = ; i <= n ; i ++)
ans1 += memc[cp[i]].first, ans2 += memc[cp[i]].second;
printf("%lld %lld\n", ans1, ans2);
return ;
}


[CF467D] Fedor and Essay的更多相关文章

  1. CF467D Fedor and Essay 建图DFS

      Codeforces Round #267 (Div. 2) CF#267D D - Fedor and Essay D. Fedor and Essay time limit per test ...

  2. Codeforces Round #267 (Div. 2) D. Fedor and Essay tarjan缩点

    D. Fedor and Essay time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  3. CodeForces 467D(267Div2-D)Fedor and Essay (排序+dfs)

    D. Fedor and Essay time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #267 Div.2 D Fedor and Essay -- 强连通 DFS

    题意:给一篇文章,再给一些单词替换关系a b,表示单词a可被b替换,可多次替换,问最后把这篇文章替换后(或不替换)能达到的最小的'r'的个数是多少,如果'r'的个数相等,那么尽量是文章最短. 解法:易 ...

  5. 【Codeforces 467D】Fedor and Essay

    Codeforces 467 D 题意:给\(m​\)个单词,以及\(n​\)个置换关系,问将\(m​\)个单词替换多次后其中所含的最少的\(R​\)的数量以及满足这个数量的最短总长度 思路:首先将置 ...

  6. Codeforces 467D Fedor and Essay bfs

    题目链接: 题意: 给定n个单词. 以下有m个替换方式.左边的单词能变成右边的单词. 替换随意次后使得最后字母r个数最少,在r最少的情况下单词总长度最短 输出字母r的个数和单词长度. 思路: 我们觉得 ...

  7. CF467 AB 水题

    Codeforces Round #267 (Div. 2) (C和D的题解单独写:CF467C George and Job (DP) CF467D Fedor and Essay 建图DFS) C ...

  8. cf467D(map,vector,bfs,特点提取)

    D. Fedor and Essay time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  9. Codeforces Round #267 (Div. 2)D(DFS+单词hash+简单DP)

    D. Fedor and Essay time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

随机推荐

  1. java使用FileSystem上传文件到hadoop分布式文件系统配置

    Configuration conf = new Configuration(); conf.set("fs.defaultFS", "hdfs://sparkclust ...

  2. J2EE简单的分页器

    J2EE项目特别是后台管理,或者一部分前台展示数据比较多,通常需要分页把展示折叠在数据区内. 一般有几种方式来实现分页, 一是官方分页插件,二是自己写,三是网上找(类似于第一种) 这里就介绍第二种, ...

  3. mybatis-geneator

    一.简介 在使用mybatis时我们需要重复的去创建pojo类.mapper文件以及dao类并且需要配置它们之间的依赖关系,比较麻烦且做了大量的重复工作,mybatis官方也发现了这个问题, 因此给我 ...

  4. P0.0口驱动一个LED闪烁

    #include<reg51.h> //头文件 sbit LED=P0^; //led接P0.0,定义P0.0为P0^0 void delay(unsigned int x) //延时函数 ...

  5. Swoole入门到实战 打造高性能 赛事直播平台(完整版)

    Thinkphp+Swoole入门到实战打造高性能赛事直播平台 第1章 课程介绍 欢迎大家来到swoole的课程!本章主要是介绍了swoole的一些特性,以及使用场景,并且分享了swoole在其他公司 ...

  6. 上传本地Jar包到阿里云的云效私有仓库

    一.前言 前2天玩了一下上传本地jar到maven中央仓库,随后我们老大又给我说了一个叫云效的私有仓库也可以玩,小编试了一下,果然很舒服,配置很简单,效率很高,几分钟就能搞定,只需要自己有个阿里云的账 ...

  7. 面试并发volatile关键字时,我们应该具备哪些谈资?

    提前发现更多精彩内容,请访问 个人博客 提前发现更多精彩内容,请访问 个人博客 提前发现更多精彩内容,请访问 个人博客 写在前面 在 可见性有序性,Happens-before来搞定 文章中,happ ...

  8. Java8新特性——接口默认方法

    Java 8 新增了接口的默认方法. 简单说,默认方法就是接口可以有实现方法,而且不需要实现类去实现其方法. 我们只需在方法名前面加个default关键字即可实现默认方法. 为什么要有这个特性? 首先 ...

  9. Redis的持久化机制是什么?各自的优缺点?

    Redis 提供两种持久化机制 RDB 和 AOF 机制: 1.RDBRedis DataBase)持久化方式:是指用数据集快照的方式半持久化模式) 记录 redis 数据库的所有键值对,在某个时间点 ...

  10. 从零开始入门 K8s | 应用存储和持久化数据卷:存储快照与拓扑调度

    作者 | 至天 阿里巴巴高级研发工程师 一.基本知识 存储快照产生背景 在使用存储时,为了提高数据操作的容错性,我们通常有需要对线上数据进行 snapshot ,以及能快速 restore 的能力.另 ...