【排列组合】给定一个M*N的格子或棋盘,从左下角走到右上角的走法总数(每次只能向右或向上移动一个方格边长的距离)
版权声明:本文为CSDN博主「梵解君」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/hadeso/article/details/12622743
--------------------------------------------------------------------------------------------------------------------
解法1:我们可以把棋盘的左下角看做二维坐标的原点(0,0),把棋盘的右上角看做二维坐标(m,n)(坐标系的单位长度为小方格的变长)
用f(i, j)表示移动到坐标f(i, j)的走法总数,其中0=<i, j<=n,设f(m, n)代表从坐标(0,0)到坐标(m,n)的移动方法,
则f(m, n) = f(m-1, n) + f(m, n-1).
于是状态f(i, j)的状态转移方程为:
f(i, j) = f(i-1, j) + f(i, j-1) if i, j>0
f(i, j) = f(i, j-1) if i=0
f(i, j) = f(i-1, j) if j=0
优化的状态f(i, j)的状态转移方程为:

递归结束条件为:f(0,0)=0, f(0,1)=1, f(1,0)=1。这个问题可以在时间O(n^2),空间O(n^2)内求解。
递归解法
//递归解法
int process(int m, int n) {
//永远不可能达到m & n同时为0的条件,除非输入m=n=0
if (m == 0 && n == 0)
return 0;
if (m == 0 || n == 0)
return 1;
return process(m, n - 1) + process(m - 1, n);
}
非递归解法
int processNew(int m,int n){
int **Q=new int*[m+1];
for(int i=0; i<=m; ++i){
Q[i]=new int[n+1]();
}
//初始化
Q[0][0]=0;
for(int j=1; j<=n; ++j)
Q[0][j]=1;
for(int i=1; i<=m; ++i)
Q[i][0]=1;
//迭代计算
for(int i=1; i<=m; ++i){
for(int j=1; j<=n; ++j){
Q[i][j]=Q[i-1][j]+Q[i][j-1];
}
}
int res=Q[m][n];
delete [] Q;
return res;
}
解法2:这个题目其实是一个组合问题。对方向编号,向上是0,向右是1,那么从左下角走到右上角一定要经过M 个1和N个0。这个题目可以转化为从M+N个不同的盒子中挑出M个盒子有多少种方法。答案是C(M+N, M),或者C(M+N, N)的组合数。
【排列组合】给定一个M*N的格子或棋盘,从左下角走到右上角的走法总数(每次只能向右或向上移动一个方格边长的距离)的更多相关文章
- nyoj1076-方案数量 【排列组合 dp】
http://acm.nyist.net/JudgeOnline/problem.php?pid=1076 方案数量 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 ...
- 一个n*n 的方格,要从左上角走到右下角,一次只能往右或往下走一步,求算法得出所有走动的方法数。
题目一:一个n*n 的方格,要从左上角走到右下角,一次只能往右或往下走一步,求算法得出所有走动的方法数. 分析:对于第(i,j)个格子,只有向右走一步到达或者向左走一步到达,dp(i,j) = d(i ...
- 给定数组a[1,2,3],用a里面的元素来生成一个长度为5的数组,打印出其排列组合
给定数组a[1,2,3],用a里面的元素来生成一个长度为5的数组,打印出其排列组合 ruby代码: def all_possible_arr arr, length = 5 ret = [] leng ...
- js 排列 组合 的一个简单例子
最近工作项目需要用到js排列组合,于是就写了一个简单的demo. 前几天在网上找到一个写全排列A(n,n)的code感觉还可以,于是贴出来了, 排列的实现方式: 全排列主要用到的是递归和数组的插入 比 ...
- C++写一个排列组合小程序
今天突然想到一个问题,有时候,针对同一个事件有多种反映,特别是游戏AI当中,这种情况下需要采取最适合的方案,哪种方案最适合,可以将每种方案的结果或影响都计算一遍,从而选择最合适的.最基本就是一个排列组 ...
- PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?
首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(一)—组合生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
随机推荐
- 【干货总结】:可能是史上最全的MySQL和PGSQL对比材料
[干货总结]:可能是史上最全的MySQL和PGSQL的对比材料 运维了MySQL和PGSQL已经有一段时间了,最近接到一个数据库选型需求,于是便开始收集资料整理了一下,然后就有了下面的对比表 关键词: ...
- .Net Core与Vue.js模块化前后端分离快速开发解决方案(NetModular)
NetModular是什么? NetModular不仅仅是一个框架,它也是一整套的模块化与前后端分离的快速开发的解决方案,目标是致力于开箱即用,让开发人员完全专注于业务开发,不需要关心底层封装和实现. ...
- 关于MySQL退出命令,还有你不知道的一种操作
前两天再进MySQL窗口的时候,手快点了一个 ' ,并且按下了enter键,于是就出现了这种情况, 然后就退不出来了,为此我还特意上网查了一下,最后的结果基本上都是只能关闭MySQL 重新进入. 因为 ...
- Linux学习资料网站汇总链接(持续更新ing)
排名不分先后. 学海无涯苦作舟. 博客: 1.slmba:LINUX博客原创大牛 2.edsionte's TechBlog:Linuxer (他的友情链接中还有一堆Linuxer,被公司屏蔽进不去. ...
- 1.InfluxDB-官方测试数据导入
本文翻译自官网,官方文档地址:https://docs.influxdata.com/influxdb/v1.7/query_language/data_download/ 1.下载官网示例数据 命令 ...
- C#通过对象属性名修改值
摘自:csdn 给一个对象属性赋值可以通过PropertyInfo.SetValue()方式进行赋值,但要注意值的类型要与属性保持一致. 创建对象实例的两种方法: 1. var obj = As ...
- SQL SERVER数据库多having 用法
举实例:查询大于500的数据,并按时间进行汇总排序 select CONVERT(VARCHAR(10),DGH,23),COUNT(*) from yxhis2017..VTBMZGHMX201 ...
- SSL证书自签名使用及监控
前言 证书简介 信息安全越来越受重视,HTTPS已经相当普及,要让我们的HTTP接口支持HTPPS,只需要一个SSL证书就可以啦 全称公钥证书(Public-Key Certificate, PKC) ...
- 秘制CSP模板
不定期更细中...... 声明1:由于js的问题导致VIEW CODE按钮只能点"I"附近才能展开代码 声明2:为了排版的美观,所有的解释以及需要留意的地方我都放在代码中了 声明3 ...
- Error response from daemon: Get https://registry-1.docker.io/v2/library/nginx/manifests/1.14-alpine: Get https://auth.docker.io/token?scope=repository%3Alibrary%2Fnginx%3Apull&service=registry.docker.
docker pull 镜像时报错: Error response from daemon: Get https://registry-1.docker.io/v2/library/nginx/man ...