花下猫语: Python 之父在 Medium 上开了博客,现在写了两篇文章,本文是第二篇的译文。前一篇的译文 在此 ,宣布了将要用 PEG 解析器来替换当前的 pgen 解析器。

本文主要介绍了构建一个 PEG 解析器的大体思路,并介绍了一些基本的语法规则。根据 Python 之父的描述,这个 PEG 解析器还是一个很笼统的实验品,而他也预告了,将会在以后的系列文章中丰富这个解析器。

阅读这篇文章就像在读一篇教程,虽然很难看懂,但是感觉很奇妙:我们竟然可以见证 Python 之父如何考虑问题、如何作设计、如何一点一点地丰富功能、并且传授出来。这种机会非常难得啊!

我会持续跟进后续文章的翻译,由于能力有限,可能翻译中有不到位之处,恳请读者们批评指正。

本文原创并首发于公众号【Python猫】,未经授权,请勿转载。

原文地址:https://mp.weixin.qq.com/s/yUQPeqc_uSRGe5lUi50kVQ


原题 | Building a PEG Parser

作者 | Guido van Rossum(Python之父)

译者 | 豌豆花下猫(“Python猫”公众号作者)

原文 | https://medium.com/@gvanrossum_83706/building-a-peg-parser-d4869b5958fb

声明 | 翻译是出于交流学习的目的,欢迎转载,但请保留本文出处,请勿用于商业或非法用途。

仅仅理解了 PEG 解析器的小部分,我就受到了启发,决定自己构建一个。结果可能不是一个很棒的通用型的 PEG 解析器生成器——这类生成器已经有很多了(例如 TatSu,写于 Python,生成 Python 代码)——但这是一个学习 PEG 的好办法,推进了我的目标,即用由 PEG 语法构建的解析器替换 CPython 的解析器。

在本文中,通过展示一个简单的手写解析器,我为如何理解解析器的工作原理奠定了基础。

(顺便说一句,作为一个实验,我不会在文中到处放参考链接。如果你有什么不明白的东西,请 Google 之 :-)

最常见的 PEG 解析方式是使用可以无限回溯的递归下降解析器。

以上周文章中的玩具语言为例:

statement: assignment | expr | if_statement
expr: expr '+' term | expr '-' term | term
term: term '*' atom | term '/' atom | atom
atom: NAME | NUMBER | '(' expr ')'
assignment: target '=' expr
target: NAME
if_statement: 'if' expr ':' statement

这种语言中超级抽象的递归下降解析器将为每个符号定义一个函数,该函数会尝试调用与备选项相对应的函数。

例如,对于statement,我们有如下函数:

def statement():
if assignment():
return True
if expr():
return True
if if_statement():
return True
return False

当然这是极其简化的版本:没有考虑解析器中必要的输入及输出。

我们就从输入端开始讲吧。

经典解析器使用单独的标记生成器,来将输入(文本文件或字符串)分解成一系列的标记,例如关键字、标识符(名称)、数字与运算符。

(译注:标记生成器,即 tokenizer,用于生成标记 token。以下简称为“标记器”)

PEG 解析器(像其它现代解析器,如 ANTLR)通常会把标记与解析过程统一。但是对于我的项目,我选择保留单独的标记器。

对 Python 做标记太复杂了,我不想拘泥于 PEG 的形式来重新实现。

例如,你必须得记录缩进(这需要在标记器内使用堆栈),而且在 Python 中处理换行很有趣(它们很重要,除了在匹配的括号内)。字符串的多种引号也会增加复杂性。

简而言之,我不抱怨 Python 现有的标记器,所以我想保留它。(CPython 有两个标记器,一个是解析器在内部使用的,写于 C,另一个在标准库中,用纯 Python 重写。它对我的项目很有帮助。)

经典的标记器通常具有一个简单的接口,供你作函数调用,例如 get_token() ,它返回输入内容中的下一个标记,每次消费掉几个字符。

tokenize 模块对它作了进一步简化:它的基础 API 是一个生成器,每次生成(yield)一个标记。

每个标记都是一个 TypeInfo 对象,它有几个字段,其中最重要之一表示的是标记的类型(例如 NAMENUMBERSTRING),还有一个很重要的是字符串值,表示该标记所包含的字符(例如 abc42 或者 "hello world")。还有的字段会指明每个标记出现在输入文件中的坐标,这对于报告错误很有用。

有一个特殊的标记类型是 ENDMARKER ,它表示的是抵达了输入文件的末尾。如果你忽略它,并尝试获取下一个标记,则生成器会终结。

离题了,回归正题。我们如何实现无限回溯呢?

回溯要求你能记住源码中的位置,并且能够从该处重新解析。标记器的 API 不允许我们重置它的输入指针,但相对容易的是,将标记流装入一个数组中,并在那里做指针重置,所以我们就这样做。(你同样可以使用 itertools.tee() 来做,但是根据文档中的警告,在我们这种情况下,效率可能较低。)

我猜你可能会先将整个输入内容标记到一个 Python 列表里,将其作为解析器的输入,但这意味着如果在文件末尾处存在着无效的标记(例如一个字符串缺少结束的引号),而在文件前面还有语法错误,那你首先会收到的是关于标记错误的信息。

我觉得这是种糟糕的用户体验,因为这个语法错误有可能是导致字符串残缺的根本原因。

所以我的设计是按需标记,所用的列表是惰性列表。

基础 API 非常简单。Tokenizer 对象封装了一个数组,存放标记及其位置信息。

它有三个基本方法:

  • get_token() 返回下一个标记,并推进数组的索引(如果到了数组末尾,则从源码中读取另一个标记)
  • mark() 返回数组的当前索引
  • reset(pos) 设置数组的索引(参数必须从 mark() 方法中得到)

我们再补充一个便利方法 peek_token() ,它返回下一个标记且不推进索引。

然后,这就成了 Tokenizer 类的核心代码:

class Tokenizer:
def __init__(self, tokengen):
"""Call with tokenize.generate_tokens(...)."""
self.tokengen = tokengen
self.tokens = []
self.pos = 0
def mark(self):
return self.pos
def reset(self, pos):
self.pos = pos
def get_token(self):
token = self.peek_token()
self.pos += 1
return token
def peek_token(self):
if self.pos == len(self.tokens):
self.tokens.append(next(self.tokengen))
return self.tokens[self.pos]

现在,仍然缺失着很多东西(而且方法和实例变量的名称应该以下划线开头),但这作为 Tokenizer API 的初稿已经够了。

解析器也需要变成一个类,以便可以拥有 statement()、expr() 和其它方法。

标记器则变成一个实例变量,不过我们不希望解析方法(parsing methods)直接调用 get_token()——相反,我们给 Parser 类一个 expect() 方法,它可以像解析类方法一样,表示执行成功或失败。

expect() 的参数是一个预期的标记——一个字符串(像“+”)或者一个标记类型(像NAME)。

讨论完了解析器的输出,我继续讲返回类型(return type)。

在我初稿的解析器中,解析函数只返回 True 或 False。那对于理论计算机科学来说是好的(解析器要解答的那类问题是“语言中的这个是否是有效的字符串?”),但是对于构建解析器却不是——相反,我们希望用解析器来创建一个 AST。

所以我们就这么办,即让每个解析方法在成功时返回 Node 对象,在失败时返回 None

Node 类可以超级简单:

class Node:
def __init__(self, type, children):
self.type = type
self.children = children

在这里,type 表示了该 AST 节点是什么类型(例如是个“add”节点或者“if”节点),children 表示了一些节点和标记(TokenInfo 类的实例)。

尽管将来我可能会改变表示 AST 的方式,但这足以让编译器生成代码或对其作分析了,例如 linting (译注:不懂)或者是静态类型检查。

为了适应这个方案,expect() 方法在成功时会返回一个 TokenInfo 对象,在失败时返回 None。为了支持回溯,我还封装了标记器的 mark() 和 reset() 方法(不改变 API)。

这是 Parser 类的基础结构:

class Parser:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def mark(self):
return self.tokenizer.mark()
def reset(self, pos):
self.tokenizer.reset(pos)
def expect(self, arg):
token = self.tokenizer.peek_token()
if token.type == arg or token.string == arg:
return self.tokenizer.get_token()
return None

同样地,我放弃了某些细节,但它可以工作。

在这里,我有必要介绍解析方法的一个重要的需求:一个解析方法要么返回一个 Node,并将标记器定位到它能识别的语法规则的最后一个标记之后;要么返回 None,然后保持标记器的位置不变。

如果解析方法在读取了多个标记之后失败了,则它必须重置标记器的位置。这就是 mark() 与 reset() 的用途。请注意,expect() 也遵循此规则。

所以解析器的实际草稿如下。请注意,我使用了 Python 3.8 的海象运算符(:=):

class ToyParser(Parser):
def statement(self):
if a := self.assignment():
return a
if e := self.expr():
return e
if i := self.if_statement():
return i
return None
def expr(self):
if t := self.term():
pos = self.mark()
if op := self.expect("+"):
if e := self.expr():
return Node("add", [t, e])
self.reset(pos)
if op := self.expect("-"):
if e := self.expr():
return Node("sub", [t, e])
self.reset(pos)
return t
return None
def term(self):
# Very similar...
def atom(self):
if token := self.expect(NAME):
return token
if token := self.expect(NUMBER):
return token
pos = self.mark()
if self.expect("("):
if e := self.expr():
if self.expect(")"):
return e
self.reset(pos)
return None

我给读者们留了一些解析方法作为练习(这实际上不仅仅是为了介绍解析器长什么样子),最终我们将像这样从语法中自动地生成代码。

NAME 和 NUMBER 等常量可从标准库的 token 库中导入。(这能令我们快速地进入 Python 的标记过程;但如果想要构建一个更加通用的 PEG 解析器,则应该探索一些其它方法。)

我还作了个小弊:expr 是左递归的,但我的解析器用了右递归,因为递归下降解析器不适用于左递归的语法规则。

有一个解决方案,但它还只是一些学术研究上的课题,我想以后单独介绍它。你们只需知道,修复的版本与这个玩具语法并非 100% 相符。

**我希望你们得到的关键信息是: **

  • 语法规则相当于解析器方法,当一条语法规则引用另一条语法规则时,它的解析方法会调用另一条规则的解析方法
  • 当多个条目构成备选项时,解析方法会一个接一个地调用相应的方法
  • 当一条语法规则引用一个标记时,其解析方法会调用 expect()
  • 当一个解析方法在给定的输入位置成功地识别了它的语法规则时,它返回相应的 AST 节点;当识别失败时,它返回 None
  • 一个解析方法在消费(consum)一个或多个标记(直接或间接地,通过调用另一个成功的解析方法)后放弃解析时,必须显式地重置标记器的位置。这适用于放弃一个备选项而尝试下一个,也适用于完全地放弃解析

如果所有的解析方法都遵守这些规则,则不必在单个解析方法中使用 mark() 和 reset()。你可以用归纳法证明这一点。

顺便提醒,虽然使用上下文管理器和 with 语句来替代显式地调用 mark() 与 reset() 很有诱惑力,但这不管用:在成功时不应调用 reset()!

为了修复它,你可以在控制流中使用异常,这样上下文管理器就知道是否该重置标记器(我认为 TatSu 做了类似的东西)。

举例,你可以这样做:

    def statement(self):
with self.alt():
return self.assignment()
with self.alt():
return self.expr()
with self.alt():
return self.if_statement()
raise ParsingFailure

特别地,atom() 中用来识别带括号的表达式的 if-语句,可以变成:

        with self.alt():
self.expect("(")
e = self.expr()
self.expect(")")
return e

但我发现这太“神奇”了——在阅读这些代码时,你必须清醒地意识到每个解析方法(以及 expect())都可能会引发异常,而这个异常会被 with 语句的上下文管理器捕获并忽略掉。

这相当不寻常,尽管肯定会支持(通过从 __exit__ 返回 true)。

还有,我的最终目标是生成 C,不是 Python,而在 C 里,没有 with 语句来改变控制流。

不管怎样,下面是未来的一些主题:

  • 根据语法生成解析代码
  • packrat 解析(记忆法)
  • EBNF 的特性,如(x | y)、[x y ...]、x* 、x+
  • tracing (用于调试解析器或语法)
  • PEG 特性,如前瞻和“切割”
  • 如何处理左递归规则
  • 生成 C 代码

相关链接:

1、PEG解析器(考虑替换现有解析器)

2、pgen解析器(现有解析器的由来)

公众号【Python猫】, 本号连载优质的系列文章,有喵星哲学猫系列、Python进阶系列、好书推荐系列、技术写作、优质英文推荐与翻译等等,欢迎关注哦。

Python 之父再发文:构建一个 PEG 解析器的更多相关文章

  1. Python 之父的解析器系列之三:生成一个 PEG 解析器

    原题 | Generating a PEG Parser 作者 | Guido van Rossum(Python之父) 译者 | 豌豆花下猫("Python猫"公众号作者) 声明 ...

  2. Python之父新发文,将替换现有解析器

    花下猫语: Guido van Rossum 是 Python 的创造者,虽然他现在放弃了"终身仁慈独裁者"的职位,但却成为了指导委员会的五位成员之一,其一举一动依然备受瞩目.近日 ...

  3. Python+Flask+Gunicorn 项目实战(一) 从零开始,写一个Markdown解析器 —— 初体验

    (一)前言 在开始学习之前,你需要确保你对Python, JavaScript, HTML, Markdown语法有非常基础的了解.项目的源码你可以在 https://github.com/zhu-y ...

  4. 几百行代码实现一个 JSON 解析器

    前言 之前在写 gscript时我就在想有没有利用编译原理实现一个更实际工具?毕竟真写一个语言的难度不低,并且也很难真的应用起来. 一次无意间看到有人提起 JSON 解析器,这类工具充斥着我们的日常开 ...

  5. 如何实现一个SQL解析器

    ​作者:vivo 互联网搜索团队- Deng Jie 一.背景 随着技术的不断的发展,在大数据领域出现了越来越多的技术框架.而为了降低大数据的学习成本和难度,越来越多的大数据技术和应用开始支持SQL进 ...

  6. CozyRSS开发记录9-快速实现一个RSS解析器

    CozyRSS开发记录9-快速实现一个RSS解析器 1.再读RSS标准 既然需要自己实现一个RSS解析器,那自然需要仔细的读一读RSS的标准文档.在网上随便找了两份,一份英文一份中文: http:// ...

  7. 一起写一个JSON解析器

    [本篇博文会介绍JSON解析的原理与实现,并一步一步写出来一个简单但实用的JSON解析器,项目地址:SimpleJSON.希望通过这篇博文,能让我们以后与JSON打交道时更加得心应手.由于个人水平有限 ...

  8. 如何编写一个JSON解析器

    编写一个JSON解析器实际上就是一个函数,它的输入是一个表示JSON的字符串,输出是结构化的对应到语言本身的数据结构. 和XML相比,JSON本身结构非常简单,并且仅有几种数据类型,以Java为例,对 ...

  9. Python 之父的解析器系列之七:PEG 解析器的元语法

    原题 | A Meta-Grammar for PEG Parsers 作者 | Guido van Rossum(Python之父) 译者 | 豌豆花下猫("Python猫"公众 ...

随机推荐

  1. css之rem布局

    rem介绍和原理网上都是,这里不具体介绍 以iphone6设计稿 let htmlWidth = document.documentElement.clientWidth || document.bo ...

  2. Google浏览器插件之闪存过滤器

    一件很有意思的事情引发的无聊尝试. 博客园有个很有趣的功能,就是闪存,翻阅到07年园长对闪存的定义:      记录一闪而过的想法,高兴或者不高兴都可以发一下.我用这个一直以来的想法就是,想到点啥发点 ...

  3. 关于svn服务部署方案

    本文只记录我的笔记 首先, 我是个懒人, 写好了shell, 直接上传把 安装包:SvnPackages-chenglee 第一, 无非就是搞掂依赖这一块 #********************* ...

  4. Windows和linux环境下按文件名和字符串搜索命令

    Windows 1.遍历C盘下所有txt 命令:for /r c:\ %i in (*.txt) do @echo %i 注释:for 循环的意思 /r 按照路径搜索 c:\ 路径 %i in   ( ...

  5. 和朱晔一起复习Java并发(一):线程池

    和我之前的Spring系列文章一样,我们会以做一些Demo做实验的方式来复习一些知识点. 本文我们先从Java并发中最最常用的线程池开始. 从一个线程池实验开始 首先我们写一个方法来每秒一次定时输出线 ...

  6. mimalloc内存分配代码分析

    这篇文章中我们会介绍一下mimalloc的实现,其中可能涉及上一篇文章提到的内容,如果不了解的可以先看下这篇mimalloc剖析.首先我们需要了解的是其整体结构,mimalloc的结构如下图所示   ...

  7. java反射构建对象和方法的反射调用

    Java反射技术应用广泛,其能够配置:类的全限定名,方法和参数,完成对象的初始化,设置是反射某些方法.可以增强java的可配置性. 1.1 通过反射构建对象(无参数): 例如我们使用 ReflectS ...

  8. 个人永久性免费-Excel催化剂功能第29波-追加中国特色的中文相关自定义函数

    中文世界里,有那么几个需求在原生Excel里没提供,例如财务部的数字转大写金额,文字转拼音等,在其他插件里,大部分是以功能区菜单按钮的方式提供.Excel催化剂认为,最佳的使用方式乃是自定义函数的方式 ...

  9. C#3.0新增功能10 表达式树 06 生成表达式

    连载目录    [已更新最新开发文章,点击查看详细] 到目前为止,你所看到的所有表达式树都是由 C# 编译器创建的. 你所要做的是创建一个 lambda 表达式,将其分配给一个类型为 Expressi ...

  10. [HDOJ] 2026.Max Sum

    2026.Max Sum (c++) Problem Description Consider the aggregate An= { 1, 2, -, n }. For example, A1={1 ...