【bzoj2384】[Ceoi2011]Match 特殊匹配条件的KMP+树状数组
题目描述
给出两个长度分别为n、m的序列A、B,求出B的所有长度为n的连续子序列(子串),满足:序列中第i小的数在序列的Ai位置。
输入
第一行包含两个整数n, m (2≤n≤m≤1000000)。
第二行包含n个整数si,构成1,2,…,n的排列,1≤si≤n且si≠sj。
第三行包含m个整数hi,表示建筑的高度(1≤hi≤109,1≤i≤m),所有的hi均不相同。
每一行的整数之间用单个空格隔开。
输出
第一行包含1个整数k ,表示匹配的序列数目。
第二行包含k个整数,分别为在正确匹配的每个序列中与标志编号1 的条纹相对应的第1 栋建筑的编号。这些数字按升序排列,用空格隔开。如果k=0 ,第二行为空行。
样例输入
5 10
2 1 5 3 4
5 6 3 8 12 7 1 10 11 9
样例输出
2
2 6
题解
特殊匹配条件的KMP+树状数组
考虑:序列满足条件可以由 每个数前面比它小的数的个数 判定。
于是我们可以先预处理出每个数前面比它小的数应该有多少个。
然后如果暴力匹配的话肯定会TLE,于是想到KMP算法。
所以需要先求出next数组。
考虑KMP求next数组的过程:当满足条件时从前一个递推到后一个。那么可以使用树状数组维护比一个数小的数的个数,当当前小于该数的数的个数不等于应有的个数时就减少长度,并暴力将减掉的数从树状数组中删除。
由于每次next减少对应的是前面的next的增加,而next每次只增加1,因此对于每个字符的均摊时间复杂度是$O(\log m)$的。
然后求出next数组后就是匹配的过程,和求next类似,需要离散化。
因此总的时间复杂度为$O((n+m)\log m)$。貌似本题还有线性做法,然而不会= =
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 1000010
int m , a[N] , s[N] , v[N] , h[N] , t[N] , next[N] , f[N] , sta[N] , tot;
inline void add(int x , int a)
{
int i;
for(i = x ; i <= m ; i += i & -i) f[i] += a;
}
inline int query(int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & -i) ans += f[i];
return ans;
}
int main()
{
int n , i , j , p = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , s[a[i]] = i;
for(i = 1 ; i <= n ; i ++ ) v[i] = query(s[i]) , add(s[i] , 1);
for(i = 1 ; i <= m ; i ++ ) scanf("%d" , &h[i]) , t[i] = h[i];
memset(f , 0 , sizeof(f));
for(i = 2 ; i <= n ; i ++ )
{
while(query(s[i]) != v[p + 1])
{
for(j = i - p ; j < i - next[p] ; j ++ ) add(s[j] , -1);
p = next[p];
}
next[i] = ++p , add(s[i] , 1);
}
sort(t + 1 , t + m + 1);
memset(f , 0 , sizeof(f));
p = 0;
for(i = 1 ; i <= m ; i ++ )
{
h[i] = lower_bound(t + 1 , t + m + 1 , h[i]) - t;
while(p == n || query(h[i]) != v[p + 1])
{
for(j = i - p ; j < i - next[p] ; j ++ ) add(h[j] , -1);
p = next[p];
}
p ++ , add(h[i] , 1);
if(p == n) sta[++tot] = i - n + 1;
}
printf("%d\n" , tot);
for(i = 1 ; i < tot ; i ++ ) printf("%d " , sta[i]);
if(tot) printf("%d" , sta[tot]);
return 0;
}
【bzoj2384】[Ceoi2011]Match 特殊匹配条件的KMP+树状数组的更多相关文章
- luoguP4696 [CEOI2011]Matching KMP+树状数组
可以非常轻易的将题意转化为有多少子串满足排名相同 注意到$KMP$算法只会在当前字符串的某尾添加和删除字符 因此,如果添加和删除后面的字符对于前面的字符没有影响时,我们可以用$KMP$来模糊匹配 对于 ...
- 【POJ 3167】Cow Patterns (KMP+树状数组)
Cow Patterns Description A particular subgroup of K (1 <= K <= 25,000) of Farmer John's cows l ...
- 【未完】训练赛20190304:KMP+树状数组+线段树+优先队列
头炸了啊,只做出L题,前两天刚看的Shawn zhou的博客学习的,幸亏看了啊,否则就爆零了,发现题目都是经典题,线段树,KMP,我都没看过,最近又在复习考研,真后悔大一大二没好好学习啊,得抽时间好好 ...
- 【poj 3167】Cow Patterns(字符串--KMP匹配+数据结构--树状数组)
题意:给2个数字序列 a 和 b ,问按从小到达排序后,a中的哪些子串与b的名次匹配. a 的长度 N≤100,000,b的长度 M≤25,000,数字的大小 K≤25. 解法:[思考]1.X 暴力. ...
- [bzoj1892][bzoj2384][bzoj1461][Ceoi2011]Match/字符串的匹配_KMP_树状数组
2384: [Ceoi2011]Match 1892: Match 1461: 字符串的匹配 题目大意: 数据范围: 题解: 很巧妙的一道题呀. 需要对$KMP$算法有很深的理解才行. 首先我们需要发 ...
- 【bzoj4641】基因改造 特殊匹配条件的KMP
题目描述 如果两个长度相等的字符串,如果存在一种字符的一一映射,使得第一个字符串的所有字符经过映射后与第二个字符串相同,那么就称它们“匹配”.现在给出两个串,求第一个字符串所有长度等于第二个字符串的长 ...
- bzoj1264 [AHOI2006]基因匹配Match 树状数组+lcs
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1255 Solved: 835[Submit][ ...
- 【LOJ#2507】[CEOI2011]Matching(KMP,树状数组)
[LOJ#2507][CEOI2011]Matching(KMP,树状数组) 题面 LOJ 题解 发现要做的是排名串的匹配. 然后我们考虑把它转成这个位置之前有多少个数小于当前这个数,这样子只要每个位 ...
- bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 793 Solved: 503[Submit][S ...
随机推荐
- round函数在oracle和mysql中用法
1.oracle和mysql通用方法 #round(字段1,小数位数) 四舍五入select round('11.123456',4);结果:11.1235 2.mysql的另外2种保留小数位数方法# ...
- Percona-Tookit工具包之pt-table-sync
Preface We've used pt-table-checksum to checksum the different table data bwtween replicatio ...
- 几种常用的git命令
1.合并代码出现冲突,用git status 查看冲突所在的文件 2. clone 指定分支分支的文件夹 git clone -b **** ***; 3.git merge 和 git rebase ...
- Spring常见面试题
本文是通过收集网上各种面试指南题目及答案然后经过整理归纳而来,仅仅是为了方便以后回顾,无意冒犯各位原创作者. Spring框架 1. 什么是Spring? Spring 是个java企业级应用的开源开 ...
- 3. 进程间通信IPC
一.概念 IPC: 1)在linux环境中的每个进程各自有不同的用户地址空间.任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间是不能相互访问. 2)如果进程间要交换数据必须通过内核,在 ...
- python 中 pynlpir错误 Cannot Open Configure file pynlpir\Data\Configure.xml 解决
在用python做分词.数据处理的时候,想调用pynlpir库,pynlpir.open()时出现错误,更新一下授权文件还是错误, 仔细一看错误是:Cannot Open Configure file ...
- ssh 远程命令
远程拷贝文件,scp -r 的常用方法: 1.使用该命令的前提条件要求目标主机已经成功安装openssh-server 如没有安装使用 sudo apt-get install openssh-ser ...
- LeetCode 二叉树的层次遍历 C++
给定一个二叉树,返回其按层次遍历的节点值. (即逐层地,从左到右访问所有节点). 例如:给定二叉树: [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7 返回其层 ...
- 用filter()筛选出素数
'use strict'; function get_primes(arr) { return arr.filter(function isPrime(number) { if (typeof num ...
- mysql 时间相关sql , 按天、月、季度、年等条件进行查询
#今天 select * from or_order_task where to_days(created_date)=to_days(now()); #近七天 select * day )<= ...