题目大意:$NOIP2018\;TG\;D1T3$

题解:题目要求最短的赛道的长度最大,可以想达到二分答案,接着就是一个显然的树形$DP$。

发现对于一个点,它子树中若有两条链接起来比要求的答案大,一定接起来成为一条路径,因为接起来答案一定加一,而传递上去的话不一定。然后对于一条链,一定是找可行的最短的链与它相接,把尽可能长的链传递上去。找最小的可行的链我使用了双向链表(复杂度$O(n)$,右端点总共最多向左移动$n$次,每次最多向右移动$1$次)

卡点:考场上写结束后删除节点后转移到下一个节点时,没有考虑到移动到的节点也被删除的情况(考场上我是真的傻)

C++ Code:

#include <cstdio>
#include <algorithm>
#include <vector>
#include <cctype> namespace R {
int x, ch;
inline int read() {
ch = getchar();
while (isspace(ch)) ch = getchar();
for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15);
return x;
}
}
using R::read; #define maxn 50010
const int TANG_Yx = 20040826;
inline int max(int a, int b) {return a > b ? a : b;}
int head[maxn], cnt;
struct Edge {
int to, nxt, w;
} e[maxn << 1];
inline void add(int a, int b, int c) {
e[++cnt] = (Edge) {b, head[a], c}; head[a] = cnt;
} int n, m, sum, ans;
int k, f[maxn];
inline bool debug(int k) {return true;}
int pre[maxn], nxt[maxn]; std::vector<int> V[maxn];
int dfn[maxn], rnk[maxn], idx, fa[maxn];
int up[maxn]; void dfs1(int u, int fa = 0) {
::fa[u] = fa; rnk[u] = u;
dfn[u] = ++idx;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
up[v] = e[i].w;
dfs1(v, u);
}
}
} inline void work(int u, int fa) {
std::vector<int> &V = ::V[u];
std::sort(V.begin(), V.end());
int sz = V.size();
while (sz && V[sz - 1] >= k) f[u]++, sz--;
int l = 0, r = 1, rem = 0;
if (sz > 0) {
#define End sz
#define Begin (sz + 1)
for (register int i = 0; i < sz; i++) {
pre[i] = i - 1;
nxt[i] = i + 1;
}
nxt[Begin] = 0;
pre[0] = Begin;
nxt[sz - 1] = End;
pre[End] = sz - 1;
while (r < End && l < r) {
while (nxt[r] < End && V[l] + V[r] < k) r = nxt[r];
while (pre[r] > l && pre[r] != Begin && V[l] + V[pre[r]] >= k) r = pre[r];
if (V[l] + V[r] >= k) {
f[u]++;
nxt[pre[l]] = nxt[l];
pre[nxt[l]] = pre[l];
nxt[pre[r]] = nxt[r];
pre[nxt[r]] = pre[r];
if (nxt[pre[l]] != End && pre[nxt[r]] != Begin && pre[nxt[r]] > nxt[pre[l]]) r = pre[nxt[r]];
else r = nxt[r];
l = nxt[pre[l]];
} else l = nxt[l];
if (l == r) r = nxt[r];
}
if (0 <= pre[End] && pre[End] < sz) rem = V[pre[End]];
else rem = 0;
#undef End
#undef Begin
}
if (u != 1) {
::V[fa].push_back(rem + up[u]);
f[fa] += f[u];
}
}
inline bool check(int mid) {
k = mid;
for (register int i = 1; i <= n; i++) V[i].clear(), f[i] = 0;
for (register int I = 1, i = rnk[I]; I <= n; i = rnk[++I]) {
work(i, fa[i]);
}
return f[1] >= m;
} namespace Work1 {
int MAX, ans;
void dfs(int u, int fa = 0, int dep = 0) {
if (dep > MAX) {
MAX = dep;
ans = u;
}
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
dfs(v, u, dep + e[i].w);
}
}
}
int main() {
MAX = 0;
dfs(1);
int x = ans;
MAX = 0;
dfs(x);
printf("%d\n", MAX);
return 0;
}
} namespace Work2 {
int pre[maxn];
void dfs(int u, int fa = 0) {
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
pre[v] = pre[u] + e[i].w;
dfs(v, u);
}
}
}
bool check(int mid) {
int last = 0, res = 0;
for (int i = 1; i <= n; i++) {
if (pre[i] - last >= mid) {
last = pre[i];
res++;
}
}
return res >= m;
}
int main() {
dfs(1);
int l = 1, r = sum / m, ans = 0;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) {
l = mid + 1;
ans = mid;
} else r = mid - 1;
}
printf("%d\n", ans);
return 0;
}
} inline bool cmp(int a, int b) {return dfn[a] > dfn[b];}
bool flag = true;
int main() {
n = read(), m = read();
for (int i = 1, a, b, c; i < n; i++) {
a = read(), b = read(), c = read();
add(a, b, c);
add(b, a, c);
if (a - b != 1 && b - a != 1) flag = false;
sum += c;
}
if (m == 1) {
return Work1::main();
}
if (flag) {
return Work2::main();
}
dfs1(1);
std::sort(rnk + 1, rnk + n + 1, cmp);
int l = 1, r = sum / m;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) {
l = mid + 1;
ans = mid;
} else r = mid - 1;
}
printf("%d\n", ans);
return 0;
}

  

[NOIP2018 TG D1T3]赛道修建的更多相关文章

  1. [NOIp2018提高组]赛道修建

    [NOIp2018提高组]赛道修建 题目大意: 给你一棵\(n(n\le5\times10^4)\)个结点的树,从中找出\(m\)个没有公共边的路径,使得第\(m\)长的路径最长.问第\(m\)长的路 ...

  2. noip 2018 D1T3 赛道修建

    noip 2018 D1T3 赛道修建 首先考虑二分答案,这时需要的就是对于一个长度求出能在树中选出来的最多的路径条数.考虑到一条路径是由一条向上的路径与一条向下的路径构成,或者仅仅是向上或向下的路径 ...

  3. noip2018 D1T3 赛道修建

    题目描述 C 城将要举办一系列的赛车比赛.在比赛前,需要在城内修建 mm 条赛道. C 城一共有 nn 个路口,这些路口编号为 1,2,…,n1,2,…,n,有 n-1n−1 条适合于修建赛道的双向通 ...

  4. NOIP2018 旅行 和 赛道修建

    填很久以前的坑. 旅行 给一棵 n 个点的基环树,求字典序最小的DFS序. n ≤ 5000 题解 O(n2) 做法非常显然,枚举断掉环上哪条边然后贪心即可.当然我去年的骚操作只能得88分. O(n ...

  5. NOIP2018 D1T3赛道修建

    题目链接:Click here Solution: 最小值最大,考虑二分一个答案\(k\) 考虑在子树内先匹配,最后传递一个值给自己的父亲(因为每条边只能用一次,所以一颗子树最多传递一个值) 那么我们 ...

  6. [NOIp2018] luogu P5021 赛道修建

    我同学的歌 题目描述 你有一棵树,每条边都有权值 did_idi​.现在要修建 mmm 条赛道,一条赛道是一条连贯的链,且一条边至多出现在一条赛道里.一条赛道的长被定义为,组成这条赛道的边的权值之和. ...

  7. Luogu5021 [NOIP2018]赛道修建

    Luogu5021 [NOIP2018]赛道修建 一棵大小为 \(n\) 的树,边带权.选 \(m\) 条链使得长度和最小的链最大. \(m<n\leq5\times10^4\) 贪心,二分答案 ...

  8. 【LG5021】[NOIP2018]赛道修建

    [LG5021][NOIP2018]赛道修建 题面 洛谷 题解 NOIP之前做过增强版还没做出来\(QAQ\) 一看到题目中的最大值最小,就很容易想到二分答案 重点是考虑如何\(check\) 设\( ...

  9. 【noip2018】【luogu5021】赛道修建

    题目描述 C 城将要举办一系列的赛车比赛.在比赛前,需要在城内修建 mm 条赛道. C 城一共有 nn 个路口,这些路口编号为 1,2,…,n1,2,…,n,有 n-1n−1 条适合于修建赛道的双向通 ...

随机推荐

  1. Mysql读写分离,主从同步实现

    随着用户量的增多,数据库操作往往会成为一个系统的瓶颈所在,因此我们可以通过实现数据库的读写分离来提高系统的性能. 通过设置主从数据库实现读写分离,主库负责“写”操作,从库负责“读”操作,根据压力情况, ...

  2. 01-HTML深入

    1.1  浏览器的工作原理 把一些标签解析成用户可视化的页面 1.2 HTML中的标签与元素 在HTML中以<xx>开始,以</xx>结束,比如<html>< ...

  3. Leecode刷题之旅-C语言/python-58.最后一个单词的长度

    /* * @lc app=leetcode.cn id=58 lang=c * * [58] 最后一个单词的长度 * * https://leetcode-cn.com/problems/length ...

  4. 解决MySQL server has gone away问题的两种有效办法

    最近做网站有一个站要用到WEB网页采集器功能,当一个PHP脚本在请求URL的时候,可能这个被请求的网页非常慢慢,超过了mysql的 wait-timeout时间,然后当网页内容被抓回来后,准备插入到M ...

  5. C语言:类型、运算符、表达式

    看了一天书,有点累了.就写写随笔记录一下今天的复习成果吧. C语言的基本数据类型 数值型:整型数,浮点数,布尔数,复数和虚数. 非数值型:字符. 整数最基本的是int,由此引出许多变式诸如有符号整数s ...

  6. 嵌入式框架Zorb Framework搭建四:状态机的实现

    我是卓波,我是一名嵌入式工程师,我万万没想到我会在这里跟大家吹牛皮. 嵌入式框架Zorb Framework搭建过程 嵌入式框架Zorb Framework搭建一:嵌入式环境搭建.调试输出和建立时间系 ...

  7. 008---re正则模块

    re正则模块 字符串的匹配规则 匹配模式 re.match() re.search() re.findall() re.split() re.sub() 元字符 print('------------ ...

  8. Spring 的好处?

    1.降低了组件之间的耦合性 ,实现了软件各层之间的解耦 2.可以使用容易提供的众多服务,如事务管理,消息服务等 3.容器提供单例模式支持 4.容器提供了AOP技术,利用它很容易实现如权限拦截,运行期监 ...

  9. Django的命令操作,python

    忘记时候,查看命令用:python manage.py 1 建立项目的命令: django-admin.py startproject project_name 2 在项目的目录下建立app: dja ...

  10. javac、jar使用实录

    因项目管理部署需要,记录一下过程,以免下次忘记了,再次使用又需要重头再来,只记录正确的操作方式,可能会提到某些错误 建立项目所在目录F:\www 案例一 其下建立项目的java源文件的包目录结构.ja ...