题目大意:$NOIP2018\;TG\;D1T3$

题解:题目要求最短的赛道的长度最大,可以想达到二分答案,接着就是一个显然的树形$DP$。

发现对于一个点,它子树中若有两条链接起来比要求的答案大,一定接起来成为一条路径,因为接起来答案一定加一,而传递上去的话不一定。然后对于一条链,一定是找可行的最短的链与它相接,把尽可能长的链传递上去。找最小的可行的链我使用了双向链表(复杂度$O(n)$,右端点总共最多向左移动$n$次,每次最多向右移动$1$次)

卡点:考场上写结束后删除节点后转移到下一个节点时,没有考虑到移动到的节点也被删除的情况(考场上我是真的傻)

C++ Code:

#include <cstdio>
#include <algorithm>
#include <vector>
#include <cctype> namespace R {
int x, ch;
inline int read() {
ch = getchar();
while (isspace(ch)) ch = getchar();
for (x = ch & 15, ch = getchar(); isdigit(ch); ch = getchar()) x = x * 10 + (ch & 15);
return x;
}
}
using R::read; #define maxn 50010
const int TANG_Yx = 20040826;
inline int max(int a, int b) {return a > b ? a : b;}
int head[maxn], cnt;
struct Edge {
int to, nxt, w;
} e[maxn << 1];
inline void add(int a, int b, int c) {
e[++cnt] = (Edge) {b, head[a], c}; head[a] = cnt;
} int n, m, sum, ans;
int k, f[maxn];
inline bool debug(int k) {return true;}
int pre[maxn], nxt[maxn]; std::vector<int> V[maxn];
int dfn[maxn], rnk[maxn], idx, fa[maxn];
int up[maxn]; void dfs1(int u, int fa = 0) {
::fa[u] = fa; rnk[u] = u;
dfn[u] = ++idx;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
up[v] = e[i].w;
dfs1(v, u);
}
}
} inline void work(int u, int fa) {
std::vector<int> &V = ::V[u];
std::sort(V.begin(), V.end());
int sz = V.size();
while (sz && V[sz - 1] >= k) f[u]++, sz--;
int l = 0, r = 1, rem = 0;
if (sz > 0) {
#define End sz
#define Begin (sz + 1)
for (register int i = 0; i < sz; i++) {
pre[i] = i - 1;
nxt[i] = i + 1;
}
nxt[Begin] = 0;
pre[0] = Begin;
nxt[sz - 1] = End;
pre[End] = sz - 1;
while (r < End && l < r) {
while (nxt[r] < End && V[l] + V[r] < k) r = nxt[r];
while (pre[r] > l && pre[r] != Begin && V[l] + V[pre[r]] >= k) r = pre[r];
if (V[l] + V[r] >= k) {
f[u]++;
nxt[pre[l]] = nxt[l];
pre[nxt[l]] = pre[l];
nxt[pre[r]] = nxt[r];
pre[nxt[r]] = pre[r];
if (nxt[pre[l]] != End && pre[nxt[r]] != Begin && pre[nxt[r]] > nxt[pre[l]]) r = pre[nxt[r]];
else r = nxt[r];
l = nxt[pre[l]];
} else l = nxt[l];
if (l == r) r = nxt[r];
}
if (0 <= pre[End] && pre[End] < sz) rem = V[pre[End]];
else rem = 0;
#undef End
#undef Begin
}
if (u != 1) {
::V[fa].push_back(rem + up[u]);
f[fa] += f[u];
}
}
inline bool check(int mid) {
k = mid;
for (register int i = 1; i <= n; i++) V[i].clear(), f[i] = 0;
for (register int I = 1, i = rnk[I]; I <= n; i = rnk[++I]) {
work(i, fa[i]);
}
return f[1] >= m;
} namespace Work1 {
int MAX, ans;
void dfs(int u, int fa = 0, int dep = 0) {
if (dep > MAX) {
MAX = dep;
ans = u;
}
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
dfs(v, u, dep + e[i].w);
}
}
}
int main() {
MAX = 0;
dfs(1);
int x = ans;
MAX = 0;
dfs(x);
printf("%d\n", MAX);
return 0;
}
} namespace Work2 {
int pre[maxn];
void dfs(int u, int fa = 0) {
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
pre[v] = pre[u] + e[i].w;
dfs(v, u);
}
}
}
bool check(int mid) {
int last = 0, res = 0;
for (int i = 1; i <= n; i++) {
if (pre[i] - last >= mid) {
last = pre[i];
res++;
}
}
return res >= m;
}
int main() {
dfs(1);
int l = 1, r = sum / m, ans = 0;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) {
l = mid + 1;
ans = mid;
} else r = mid - 1;
}
printf("%d\n", ans);
return 0;
}
} inline bool cmp(int a, int b) {return dfn[a] > dfn[b];}
bool flag = true;
int main() {
n = read(), m = read();
for (int i = 1, a, b, c; i < n; i++) {
a = read(), b = read(), c = read();
add(a, b, c);
add(b, a, c);
if (a - b != 1 && b - a != 1) flag = false;
sum += c;
}
if (m == 1) {
return Work1::main();
}
if (flag) {
return Work2::main();
}
dfs1(1);
std::sort(rnk + 1, rnk + n + 1, cmp);
int l = 1, r = sum / m;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) {
l = mid + 1;
ans = mid;
} else r = mid - 1;
}
printf("%d\n", ans);
return 0;
}

  

[NOIP2018 TG D1T3]赛道修建的更多相关文章

  1. [NOIp2018提高组]赛道修建

    [NOIp2018提高组]赛道修建 题目大意: 给你一棵\(n(n\le5\times10^4)\)个结点的树,从中找出\(m\)个没有公共边的路径,使得第\(m\)长的路径最长.问第\(m\)长的路 ...

  2. noip 2018 D1T3 赛道修建

    noip 2018 D1T3 赛道修建 首先考虑二分答案,这时需要的就是对于一个长度求出能在树中选出来的最多的路径条数.考虑到一条路径是由一条向上的路径与一条向下的路径构成,或者仅仅是向上或向下的路径 ...

  3. noip2018 D1T3 赛道修建

    题目描述 C 城将要举办一系列的赛车比赛.在比赛前,需要在城内修建 mm 条赛道. C 城一共有 nn 个路口,这些路口编号为 1,2,…,n1,2,…,n,有 n-1n−1 条适合于修建赛道的双向通 ...

  4. NOIP2018 旅行 和 赛道修建

    填很久以前的坑. 旅行 给一棵 n 个点的基环树,求字典序最小的DFS序. n ≤ 5000 题解 O(n2) 做法非常显然,枚举断掉环上哪条边然后贪心即可.当然我去年的骚操作只能得88分. O(n ...

  5. NOIP2018 D1T3赛道修建

    题目链接:Click here Solution: 最小值最大,考虑二分一个答案\(k\) 考虑在子树内先匹配,最后传递一个值给自己的父亲(因为每条边只能用一次,所以一颗子树最多传递一个值) 那么我们 ...

  6. [NOIp2018] luogu P5021 赛道修建

    我同学的歌 题目描述 你有一棵树,每条边都有权值 did_idi​.现在要修建 mmm 条赛道,一条赛道是一条连贯的链,且一条边至多出现在一条赛道里.一条赛道的长被定义为,组成这条赛道的边的权值之和. ...

  7. Luogu5021 [NOIP2018]赛道修建

    Luogu5021 [NOIP2018]赛道修建 一棵大小为 \(n\) 的树,边带权.选 \(m\) 条链使得长度和最小的链最大. \(m<n\leq5\times10^4\) 贪心,二分答案 ...

  8. 【LG5021】[NOIP2018]赛道修建

    [LG5021][NOIP2018]赛道修建 题面 洛谷 题解 NOIP之前做过增强版还没做出来\(QAQ\) 一看到题目中的最大值最小,就很容易想到二分答案 重点是考虑如何\(check\) 设\( ...

  9. 【noip2018】【luogu5021】赛道修建

    题目描述 C 城将要举办一系列的赛车比赛.在比赛前,需要在城内修建 mm 条赛道. C 城一共有 nn 个路口,这些路口编号为 1,2,…,n1,2,…,n,有 n-1n−1 条适合于修建赛道的双向通 ...

随机推荐

  1. laravel 增删改查 数据库设置 路由设置

    laravel 框架的路由设置: url: http://www.shanzezhao.com/laraverl/my_laravel/public/index.php/indexs laravel ...

  2. php 移动或重命名文件(图片)到另一目录下的方法有多种,这里只列出三种:

    php 移动或重命名文件(图片)到另一目录下的方法有多种,这里只列出三种:       方法一:使用copy函数   格式:copy(source,destination)   将文件从 source ...

  3. Json格式化时间

    @DateTimeFormat(pattern = "yyyy-MM-dd HH:mm:ss")@JsonFormat(timezone = "GMT+8", ...

  4. 关于xampp 集成开发包电脑重启mysql无法启动的问题

    关于xampp 集成开发包电脑重启mysql无法启动的问题. 在做php开发时,安装过xampp,也不知道是版本老了还是什么问题,总是出现当天晚上下班关机,第二天上班mysql不能启动,在网上查找些资 ...

  5. kafka单机部署文档

    单机Kafka部署文档 最简单的使用方式,单机,使用自带的zookeeper 1.解压 下载地址:http://pan.baidu.com/s/1i4K2pXr tar –zxvf kafka_2.1 ...

  6. AR技术介绍(Located in Android)

    一,什么是AR 在说AR技术之前,先来说说VR. 虚拟现实(VR:Virtual Reality)是采用以计算机技术为核心的技术,生成逼真的视,听,触觉等一体化的虚拟环境,用户借助必要的设备以自然的方 ...

  7. codevs 1214 线段覆盖/1643 线段覆盖 3

    1214 线段覆盖/1214 线段覆盖  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold       题目描述 Description 给定x轴上的N(0< ...

  8. asp.net 模拟CURL调用微信公共平台API 上传下载多媒体文件接口

    FormItem类 public class FormItem { public string Name { get; set; } public ParamType ParamType { get; ...

  9. js学习日记-new Object和Object.create到底干了啥

    function Car () { this.color = "red"; } Car.prototype.sayHi=function(){ console.log('你好') ...

  10. 近期准备发布我的asp.net框架

    此框架为超轻量级架构,适合做中小型的b/s项目