题目描述

在生物课中我们学过,碱基组成了DNA(脱氧核糖核酸),他们分别可以用大写字母A,C,T,G表示,其中A总与T配对,C总与G配对。两个碱基序列能相互匹配,当且仅当它们等长,并且任意相同位置的碱基都是能相互配对的。例如ACGTC能且仅能与TGCAG配对。一个相对短的碱基序列能通过往该序列中任意位置补足碱基来与一个相对长的碱基序列配对。补全碱基的位置、数量不同,都将视为不同的补全方案。现在有两串碱基序列S和T,分别有n和m个碱基(n>=m),问一共有多少种补全方案。

输入

数据包括三行。
第一行有两个整数n,m,表示碱基序列的长度。
第二行包含n个字符,表示碱基序列S。
第三行包含m个字符,表示碱基序列T。
两个碱基序列的字符种类只有A,C,G,T这4个大写字母。

输出

答案只包含一行,表示补全方案的个数。

样例输入

10 3
CTAGTAGAAG
TCC

样例输出

4


题解

高中生物 dp+高精度

根据碱基互补配对原则,S的互补链是确定的,所以所求转化为在S的互补链中依次选择m个不同种碱基。。。

设f[i]为将T串的前i个选完的方案数。

那么对于S中的位置i和T中的位置j,如果它们互补,则更新答案,f[j]+=f[j-1]。

注意需要倒着循环,因为S串中的每个碱基只能用一次。

注意需要高精度。

#include <cstdio>
#define mod 100000000
char s1[2010] , s2[2010];
struct data
{
int len , num[100];
data operator+=(const data a)
{
int i;
for(i = 0 ; i < len || i < a.len || num[i] ; i ++ )
num[i] += a.num[i] , num[i + 1] += num[i] / mod , num[i] %= mod;
len = i;
return *this;
}
void output()
{
int i;
printf("%d" , num[len - 1]);
for(i = len - 2 ; i >= 0 ; i -- )
printf("%08d" , num[i]);
printf("\n");
}
}f[2010];
bool judge(char a , char b)
{
return (a == 'A' && b == 'T') || (a == 'G' && b == 'C') || (a == 'C' && b == 'G') || (a == 'T' && b == 'A');
}
int main()
{
int n , m , i , j;
scanf("%d%d%s%s" , &n , &m , s1 + 1 , s2 + 1);
f[0].len = f[0].num[0] = 1;
for(i = 1 ; i <= n ; i ++ )
for(j = m ; j ; j -- )
if(judge(s1[i] , s2[j]))
f[j] += f[j - 1];
f[m].output();
return 0;
}

【bzoj2764】[JLOI2011]基因补全 dp+高精度的更多相关文章

  1. BZOJ_2764_[JLOI2011]基因补全_DP_高精度

    BZOJ_2764_[JLOI2011]基因补全_DP_高精度 Description 在生物课中我们学过,碱基组成了DNA(脱氧核糖核酸),他们分别可以用大写字母A,C,T,G表示,其中A总与T配对 ...

  2. BZOJ2764 [JLOI2011]基因补全

    Description 在 生物课中我们学过,碱基组成了DNA(脱氧核糖核酸),他们分别可以用大写字母A,C,T,G表示,其中A总与T配对,C总与G配对.两个碱基序列能相互 匹配,当且仅当它们等长,并 ...

  3. 2764: [JLOI2011]基因补全

    2764: [JLOI2011]基因补全 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 570  Solved: 187[Submit][Status ...

  4. [JLOI2011]基因补全

    1973: [JLOI2011]基因补全 Time Limit: 1 Sec  Memory Limit: 256 MB Description 在生物课中我们学过,碱基组成了DNA(脱氧核糖核酸), ...

  5. bzoj2764 基因补全

    Description 在生物课中我们学过,碱基组成了DNA(脱氧核糖核酸),他们分别可以用大写字母A,C,T,G表示,其中A总与T配对,C总与G配对.两个碱基序列能相互匹配,当且仅当它们等长,并且任 ...

  6. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  7. [JZYZOJ 1288][洛谷 1005] NOIP2007 矩阵取数 dp 高精度

    https://www.luogu.org/problem/show?pid=1005   dp好想,高精度练手题,有点不舒服的是前后取数位置的计算,代码量太少才会写题这么慢,noip之前虽然重点放在 ...

  8. Oracle补全日志(Supplemental logging)

    Oracle补全日志(Supplemental logging)特性因其作用的不同可分为以下几种:最小(Minimal),支持所有字段(all),支持主键(primary key),支持唯一键(uni ...

  9. python 添加tab补全

    在平时查看Python方法用到tab补全还是很方便的. 1. mac 平台 配置如下: mac是类Unix平台,需要在添加一条配置内容到bash_profile 中(默认是没有这个文件,可以新建一个放 ...

随机推荐

  1. spring的事务处理

    说到事务,无非就是事务的提交commit和回滚rollback. 事务是一个操作序列,这些操作要么全部都执行成功,事务去提交,要么就是有一个操作失败,事务去回滚. 要知道事务的4大特性ACID.即原子 ...

  2. Asp.Net Core 生成图形验证码

    前几天有朋友问我怎么生成图片验证码,话不多说直接上代码. 支持.NET CORE开源.助力.NET Core社区发展. using System; using System.IO; using Sys ...

  3. hadoop生态搭建(3节点)-05.mysql配置_单节点

    # ==================================================================node1 # ======================== ...

  4. Leecode刷题之旅-C语言/python-26.移除元素

    /* * @lc app=leetcode.cn id=27 lang=c * * [27] 移除元素 * * https://leetcode-cn.com/problems/remove-elem ...

  5. 学习RUNOOB.COM进度二

    MongoDB 概念解析 SQL术语/概念 MongoDB术语/概念 解释/说明 database database 数据库 table collection 数据库表/集合 row document ...

  6. 基于jQuery的2048小游戏设计(网页版)

    上周模仿一个2048小游戏,总结一下自己在编写代码的时候遇到的一些坑. 游戏规则:省略,我想大部分人都玩过,不写了 源码地址:https://github.com/xinhua6/2048game.g ...

  7. SIMD数据并行(一)——向量体系结构

    在计算机体系中,数据并行有两种实现路径:MIMD(Multiple Instruction Multiple Data,多指令流多数据流)和SIMD(Single Instruction Multip ...

  8. HDU暑假多校第八场J-Taotao Picks Apples

    一.题意 给定一个序列,之后给出若干个修改,修改的内容为在原序列的基础上,将某一位元素的值改成给定的值<每次修改相互独立,不保存修改后的结果>.之后询问,在选择第一位元素的情况下,最长递增 ...

  9. python2.7练习小例子(六)

        6):题目:斐波那契数列.     程序分析:斐波那契数列(Fibonacci sequence),又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……. ...

  10. 查看sql 作业明细及运行记录

    --查看作业明细及状态 select j.name 'Job名', j.description '描述', j.ENABLED job_enabled, cast(js.last_run_date a ...