题目描述

在生物课中我们学过,碱基组成了DNA(脱氧核糖核酸),他们分别可以用大写字母A,C,T,G表示,其中A总与T配对,C总与G配对。两个碱基序列能相互匹配,当且仅当它们等长,并且任意相同位置的碱基都是能相互配对的。例如ACGTC能且仅能与TGCAG配对。一个相对短的碱基序列能通过往该序列中任意位置补足碱基来与一个相对长的碱基序列配对。补全碱基的位置、数量不同,都将视为不同的补全方案。现在有两串碱基序列S和T,分别有n和m个碱基(n>=m),问一共有多少种补全方案。

输入

数据包括三行。
第一行有两个整数n,m,表示碱基序列的长度。
第二行包含n个字符,表示碱基序列S。
第三行包含m个字符,表示碱基序列T。
两个碱基序列的字符种类只有A,C,G,T这4个大写字母。

输出

答案只包含一行,表示补全方案的个数。

样例输入

10 3
CTAGTAGAAG
TCC

样例输出

4


题解

高中生物 dp+高精度

根据碱基互补配对原则,S的互补链是确定的,所以所求转化为在S的互补链中依次选择m个不同种碱基。。。

设f[i]为将T串的前i个选完的方案数。

那么对于S中的位置i和T中的位置j,如果它们互补,则更新答案,f[j]+=f[j-1]。

注意需要倒着循环,因为S串中的每个碱基只能用一次。

注意需要高精度。

#include <cstdio>
#define mod 100000000
char s1[2010] , s2[2010];
struct data
{
int len , num[100];
data operator+=(const data a)
{
int i;
for(i = 0 ; i < len || i < a.len || num[i] ; i ++ )
num[i] += a.num[i] , num[i + 1] += num[i] / mod , num[i] %= mod;
len = i;
return *this;
}
void output()
{
int i;
printf("%d" , num[len - 1]);
for(i = len - 2 ; i >= 0 ; i -- )
printf("%08d" , num[i]);
printf("\n");
}
}f[2010];
bool judge(char a , char b)
{
return (a == 'A' && b == 'T') || (a == 'G' && b == 'C') || (a == 'C' && b == 'G') || (a == 'T' && b == 'A');
}
int main()
{
int n , m , i , j;
scanf("%d%d%s%s" , &n , &m , s1 + 1 , s2 + 1);
f[0].len = f[0].num[0] = 1;
for(i = 1 ; i <= n ; i ++ )
for(j = m ; j ; j -- )
if(judge(s1[i] , s2[j]))
f[j] += f[j - 1];
f[m].output();
return 0;
}

【bzoj2764】[JLOI2011]基因补全 dp+高精度的更多相关文章

  1. BZOJ_2764_[JLOI2011]基因补全_DP_高精度

    BZOJ_2764_[JLOI2011]基因补全_DP_高精度 Description 在生物课中我们学过,碱基组成了DNA(脱氧核糖核酸),他们分别可以用大写字母A,C,T,G表示,其中A总与T配对 ...

  2. BZOJ2764 [JLOI2011]基因补全

    Description 在 生物课中我们学过,碱基组成了DNA(脱氧核糖核酸),他们分别可以用大写字母A,C,T,G表示,其中A总与T配对,C总与G配对.两个碱基序列能相互 匹配,当且仅当它们等长,并 ...

  3. 2764: [JLOI2011]基因补全

    2764: [JLOI2011]基因补全 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 570  Solved: 187[Submit][Status ...

  4. [JLOI2011]基因补全

    1973: [JLOI2011]基因补全 Time Limit: 1 Sec  Memory Limit: 256 MB Description 在生物课中我们学过,碱基组成了DNA(脱氧核糖核酸), ...

  5. bzoj2764 基因补全

    Description 在生物课中我们学过,碱基组成了DNA(脱氧核糖核酸),他们分别可以用大写字母A,C,T,G表示,其中A总与T配对,C总与G配对.两个碱基序列能相互匹配,当且仅当它们等长,并且任 ...

  6. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  7. [JZYZOJ 1288][洛谷 1005] NOIP2007 矩阵取数 dp 高精度

    https://www.luogu.org/problem/show?pid=1005   dp好想,高精度练手题,有点不舒服的是前后取数位置的计算,代码量太少才会写题这么慢,noip之前虽然重点放在 ...

  8. Oracle补全日志(Supplemental logging)

    Oracle补全日志(Supplemental logging)特性因其作用的不同可分为以下几种:最小(Minimal),支持所有字段(all),支持主键(primary key),支持唯一键(uni ...

  9. python 添加tab补全

    在平时查看Python方法用到tab补全还是很方便的. 1. mac 平台 配置如下: mac是类Unix平台,需要在添加一条配置内容到bash_profile 中(默认是没有这个文件,可以新建一个放 ...

随机推荐

  1. Linux 用户 和 组 快速了解

    1用户 (Linux中“只有超级管理员”才有权限操作 用户 和组) 1.1添加用户 useradd 命令 例如 :useradd hly //添加了一个新账户 hly 用户添加后 会存放在一个文件中, ...

  2. 构造HTTP请求Header实现“伪造来源IP”

    在阅读本文前,大家要有一个概念,在实现正常的TCP/IP 双方通信情况下,是无法伪造来源 IP 的,也就是说,在 TCP/IP 协议中,可以伪造数据包来源 IP ,但这会让发送出去的数据包有去无回,无 ...

  3. laravel路由组+中间件

    在rotues中的web.php

  4. flask的模板

    flask用的是jinja2的模板 模板其实是一个包含响应文本的文件,其中用占位符(变量)表示动态部分,告诉模板引擎其具体的值需要从使用的数据中获取 使用真实值替换变量,再返回最终得到的字符串,这个过 ...

  5. python3 练习题100例 (二十七)列表元素改写

    题目内容: 输入一个列表alist,要求列表中的每个元素都为正整数且不超过10: 将列表中的奇数变为它的平方,偶数除以2后打印新的列表(新的列表中所有元素仍都为整数). 可以使用以下实现列表alist ...

  6. 常用数字信号的产生(C实现)-ARMA模型数据生成

    ARMA模型属于信号现代谱估计的范畴,AR模型常用于信号的线性预测.AR模型最后归结为线性方程,MA最后为非线性方程,因此,AR模型使用较多. AR模型最后归结为解Yule-Walker方程,对应矩阵 ...

  7. mybatis 打印SQL

    如果使用的是application.properties文件,加入如下配置: #打印SQL logging.level.com.jn.ssr.supererscuereporting.dao=debu ...

  8. 洛谷(P1006 传纸条)

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运 ...

  9. win7 下安装oracle 11g出现错误: 启动服务出现错误 找不到服务OracleMTSRecoveryService

    这种错误是在多次安装oracle都没有成功的情况下发生的. 正确安装oracle,是有前提条件的 1,安装最新的jdk,不是jre!!(并配好环境变量,在cmd中测试 java -version与ja ...

  10. Android面试收集录 Android系统的资源+其他

    1.Android应用程序的资源是如何存储的,如何使用? res文件夹或者assets文件夹 res目录中的资源在R类中生成一个int变量,然后再布局文件中可以直接使用,在代码中,要getResour ...