题目大意:有$n$个布尔变量 $x_1 \sim x_n$,另有$m$个需要满足的条件,每个条件的形式都是"$x_i$ 为$true/false$或$x_j$为$true/false$"。比如"$x_1$为$true$或$x_3$为$false$"、"$x_7$为$false$或$x_2$为$false$"。$2-SAT$问题的目标是给每个变量赋值使得所有条件得到满足。

题解:$2-SAT$,若$a$推出$b$,就连两条边,分别为$a -> b$和$!b -> !a$,若$a$一定为$true$,就连一条$!a -> a$($false$相同),然后$tarjan$缩点,若一个点的两个状态在同一个强连通分量中,就有矛盾,否则那一个状态先访问到就为什么状态

卡点:1.$tarjan$缩点弹出栈时条件写错

C++ Code:

#include <cstdio>
#define maxn 1000010 << 1
using namespace std;
int n, m;
int head[maxn], cnt;
struct Edge {
int to, nxt;
} e[maxn];
void add(int a, int b) {
e[++cnt] = (Edge) {b, head[a]}; head[a] = cnt;
}
int low[maxn], DFN[maxn], stack[maxn], res[maxn], tot, idx, CNT;
bool vis[maxn];
inline int min(int a, int b) {return a < b ? a : b;}
void tarjan(int rt) {
DFN[rt] = low[rt] = ++idx;
vis[stack[++tot] = rt] = true;
int v;
for (int i = head[rt]; i; i = e[i].nxt) {
v = e[i].to;
if (DFN[v]) {
if (vis[v]) low[rt] = min(low[rt], DFN[v]);
} else {
tarjan(v);
low[rt] = min(low[rt], low[v]);
}
}
if (DFN[rt] == low[rt]) {
CNT++;
do {
vis[v = stack[tot--]] = false;
res[v] = CNT;
} while (rt != v);
}
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++) {
int a, b, c, d;
scanf("%d%d%d%d", &a, &b, &c, &d);
add(a << 1 | !b, c << 1 | d);
add(c << 1 | !d, a << 1 | b);
}
for (int i = 2; i <= (n << 1 | 1); i++) {
if (!DFN[i]) tarjan(i);
}
for (int i = 1; i <= n; i++) {
if (res[i << 1] == res[i << 1 | 1]) {
puts("IMPOSSIBLE");
return 0;
}
}
puts("POSSIBLE");
for (int i = 1; i <= n; i++) printf("%d ", res[i << 1] > res[i << 1 | 1]);
puts("");
return 0;
}

  

[洛谷P4782]【模板】2-SAT 问题的更多相关文章

  1. [洛谷P4782] [模板] 2-SAT 问题

    NOIp后第一篇题解. NOIp我考的很凉啊...... 题目传送门 之前讲过怎么判断2-SAT是否存在解. 至于如何构造一组解: 我们想到对tarjan缩点后的图进行拓扑排序. 那么对于代表0状态的 ...

  2. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  3. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  4. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  5. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  6. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  7. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  8. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  9. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  10. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

随机推荐

  1. nodejs--http

    http模块主要用到四个方法: 1.Server类 const http = require('http'); let server = new Server(); server.on('reques ...

  2. js中split()和join()的用法

    Split()方法:把一个字符串分割成字符串数组 如上所示:把字符串a按空格分隔,得3个字符串数组. 在如: var  a=”hao are you”  a.split(“”);  得到[h,a,o, ...

  3. EpiiAdmin 开源的php交互性管理后台框架, 让复杂的交互变得更简单!Phper快速搭建交互性平台的开发框架,基于Thinkphp5.1+Adminlte3.0+Require.js。

    EpiiAdmin EpiiAdmin php开源交互性管理后台框架,基于Thinkphp5.1+Adminlte3.0+Require.js, 让复杂的交互变得更简单!Phper快速搭建交互性平台的 ...

  4. go web处理上传

    要使表单能够上传文件,第一步就是添加form的enctype属性,enctype属性有如下三种情况: application/x-www-form-urlencoded 表示在发送前编码所有字符(默认 ...

  5. Java+Selenium3方法篇24-单选和多选按钮操作

    Java+Selenium3方法篇24-单选和多选按钮操作 本篇介绍 webdriver处理前端单选按钮的操作.单选按钮一般叫raido button,就像我们在电子版的单选答题过程一样,单选只能点击 ...

  6. 深入了解jQuery Mobile-3装载器

    介绍 当jQuery Mobile通过Ajax加载内容或用于自定义通知时,会显示一个小的加载叠加层. 标准loader $( document ).on( "click", &qu ...

  7. ffplay使用笔记

    ffplay播放yuv文件命令: ffplay -f rawvideo -video_size 1920x1080 a.yuv   ffplay播放mp4.h.264.hevc文件命令: ffplay ...

  8. BFS 队列

    Plague Inc. is a famous game, which player develop virus to ruin the world. JSZKC wants to model thi ...

  9. 关于 SSH Server 的整体设定

    # . 关于 SSH Server 的整体设定,包含使用的 port 啦,以及使用的密码演算方式 Port # SSH 预设使用 这个 port,您也可以使用多的 port ! # 亦即重复使用 po ...

  10. 引用外部静态库(.a文件)时或打包.a时,Category方法无法调用。崩溃

    我的这个是MJRefresh,学习打.a包Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: ...