~~~题面~~~

题解:

  因为数据范围不大,而且题目要求的是正方形,所以这道题有2种解法。

  1,st表。

    这种解法暴力好写好理解,但是较慢。我们设st[i][j][k]表示以(i, j)为左端点,向下/向右分别扩展$2^k$格的最大值,最小值同理,处理完后$n^2$枚举左端点取最优值即可。

    (此为早期代码,写丑了不要介意)

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 1010
#define ac 110
//#define getchar() *S ++
//char READ[1250000],*S = READ;
int n,a,b,ans = INT_MAX;
int st_max[AC][AC][], st_min[AC][AC][];
int k, q = ;
//二维ST表emmmm inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} inline int Max(int a, int b, int c, int d)
{
if(a > b && a > c && a > d) return a;
else if(b > c && b > d) return b;
else if(c > d) return c;
else return d;
} inline int Min(int a, int b, int c, int d)
{
if(a < b && a < c && a < d) return a;
else if(b < c && b < d) return b;
else if(c < d) return c;
else return d;
} void pre()
{
a = read(), b = read(), n = read();
for(R i = ; i <= a; i ++)
for(R j = ; j <= b; j ++)
st_max[i][j][] = st_min[i][j][] = read();
} void check()
{
for(R i = ; i <= a; i ++)
for(R j = ; j <= b; j ++)
{
printf("!!!(%d , %d)\nst_max:\n", i, j);
for(R l = ; l <= k; l ++)
printf("2^%d = %d\n", l, st_max[i][j][l]);
printf("\n");
printf("st_min:\n");
for(R l = ; l <= k; l ++)
printf("2^%d = %d\n", l, st_min[i][j][l]);
printf("\n\n");
}
} void build()
{
while(n > q) q <<= , ++ k;
-- k, q >>= ;
int pos=;
for(R l = ; l <= k; l ++)
{
for(R i = pos + ; i <= a; i ++)
{
for(R j = pos + ; j <= b; j ++)
{
st_max[i][j][l] = Max(st_max[i - pos][j][l - ], st_max[i][j - pos][l - ], st_max[i - pos][j - pos][l - ], st_max[i][j][l - ]);
st_min[i][j][l] = Min(st_min[i - pos][j][l - ], st_min[i][j - pos][l - ], st_min[i - pos][j - pos][l - ], st_min[i][j][l - ]);
}
}
pos <<= ;
}
} void work()
{
int maxn, minn;
for(R i = n; i <= a; i ++)
for(R j = n; j <= b; j ++)
{
maxn = Max(st_max[i][j][k], st_max[i - n + q][j - n + q][k], st_max[i - n + q][j][k], st_max[i][j - n + q][k]);
minn = Min(st_min[i][j][k], st_min[i - n + q][j - n + q][k], st_min[i - n + q][j][k], st_min[i][j - n + q][k]);
ans = min(ans, maxn - minn);
}
printf("%d\n", ans);
} int main()
{
// freopen("in.in", "r", stdin);
//fread(READ, 1, 1200000, stdin);
pre();
build();
//check();
work();
// fclose(stdin);
return ;
}

  2,单调队列。

    其实也好理解,,,但是感觉很多博客没有图所以意思讲的不是很清晰,这里就详细讲一下吧。

    类似于滑动窗口,如果没做过这题建议先理解这题的做法。

    可以看做此题就是滑动窗口的二维扩展版。那么我们已经有了在序列上获取指定区间大小的最大最小值的方法,要如何才能扩展到二维平面上呢?

    其实画个图就很好理解了。

    如果我们将每个红色区间的最大最小值都存在蓝色点上,那么只需要对蓝色点做一次滑动窗口,就可以获得指定大小的矩形最大最小值了。

    因为每个蓝色点已经代表了指定区间大小的行的最大最小值,所以再在这个基础上查询蓝点指定区间的最大最小值就相当于是在查询一个矩形了。

    

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 1100
#define LL long long int n, m, k, ans = INT_MAX;
int s[AC][AC], g[AC][AC], f[AC][AC]; struct node{
int x, id;
}; struct que{
node q[AC];int head, tail;
void init()
{
head = , tail = ;
} void add_max(int x, int id)
{
while(head <= tail && q[head].id <= id - k) ++ head;
while(head <= tail && q[tail].x <= x) -- tail;
q[++tail] = (node){x, id};
} void add_min(int x, int id)
{
while(head <= tail && q[head].id <= id - k) ++ head;
while(head <= tail && q[tail].x >= x) -- tail;
q[++tail] = (node){x, id};
} int top() {return q[head].x;}
}q1, q2; inline void upmin(int &a, int b)
{
if(b < a) a = b;
} inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} void pre()
{
n = read(), m = read(), k = read();
for(R i = ; i <= n; i ++)
for(R j = ; j <= m; j ++) s[i][j] = read();
} void build()//先对每一行求出来
{
for(R i = ; i <= n; i ++)//枚举行
{
q1.init(), q2.init();
for(R j = ; j <= m; j ++)//枚举列
{
q1.add_min(s[i][j], j), q2.add_max(s[i][j], j);
if(j >= k) f[i][j] = q1.top(), g[i][j] = q2.top();
}
}
} void work()//再求整体的
{
for(R i = k; i <= m; i ++)//先枚举列,再枚举行
{
q1.init(), q2.init();
for(R j = ; j <= n; j ++)
{
q1.add_min(f[j][i], j), q2.add_max(g[j][i], j);
if(j >= k) upmin(ans, q2.top() - q1.top());
}
}
printf("%d\n", ans);
} int main()
{
// freopen("in.in", "r", stdin);
pre();
build();
work();
// fclose(stdin);
return ;
}

[HAOI2007]理想的正方形 st表 || 单调队列的更多相关文章

  1. P2216 [HAOI2007]理想的正方形(dp+单调队列优化)

    题目链接:传送门 题目: 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表 ...

  2. [BZOJ1047][HAOI2007]理想的正方形 二维单调队列

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素.然后扫描每一 ...

  3. bzoj1047 [HAOI2007]理想的正方形——二维单调队列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...

  4. [Bzoj1047][HAOI2007]理想的正方形(ST表)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 题目虽然有一个n的限制,但求二维区间最值首先想到的还是RMQ,但是如果按照往常RM ...

  5. Codeforces Round #278 (Div. 1) B - Strip dp+st表+单调队列

    B - Strip 思路:简单dp,用st表+单调队列维护一下. #include<bits/stdc++.h> #define LL long long #define fi first ...

  6. [luogu2216 HAOI2007] 理想的正方形 (2dST表 or 单调队列)

    题目描述 有一个ab的整数组成的矩阵,现请你从中找出一个nn的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至第a ...

  7. [Bzoj4540][Hnoi2016] 序列(莫队 + ST表 + 单调队列)

    4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1567  Solved: 718[Submit][Status] ...

  8. P2216 [HAOI2007]理想的正方形

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  9. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

随机推荐

  1. 【bind服务简单发布及优化部署】

    主DNS 1:安装bind服务包 2:vim  /etc/named.conf区域解析控制文件 3:vim /etc/named.rfc1912.zones解析方向文件 4:vim var/named ...

  2. ES6、7、8、9新语法新特性

    前言 如果你擅长这种扩散式学习方式,不妨再进一步温习一下整个 ES6 引入的新特性,笔者强烈推荐阮一峰老师的 ECMAScript 6 入门 一书. ES2018 引入的特性还太新,单在对 ES6 特 ...

  3. web前端总结面试问题<经常遇到的手写代码>

    冒泡排序 var arr = [5,8,3,6,9] for(var i=0;i<arr.length;i++){ for(var j=i+1;j<arr.length;j++){ if( ...

  4. 关于parseInt的看法

    ​ 前面在看题目的时候 偶然看到 使用parseInt 来进行整数判断 但是这里的parseInt是错误示范 之后了解了一下 发现这和函数 很有研究 先看看 w3c怎么说这个的 parseInt() ...

  5. YII2.0 用GII创建视图文件后访问404

    使用GII的CRUD Generator创建searchModelClass 和控制器类文件,视图文件后,访问控制器地址后出现404的情况. 创建过程如图所示 后来发现是控制器类 Controller ...

  6. hadoop搭建----centos免密码登录、修改hosts文件

    分布式系统在传输数据时需要多台电脑免密码登录 如:A(192.168.227.12)想ssh免密码登录到B(192.168.227.12),需要把A的公钥文件(~/.ssh/id_rsa.pub)里内 ...

  7. linux-课题练习1

    1.创建组testgroup: 2.创建用户a2012,先采用默认设置创建,然后使该用户加入testgroup组. 3.创建用户a2013,其用户主目录为/tmp/a2013,其主组为testgrou ...

  8. 基于vue来开发一个仿饿了么的外卖商城(一)

    一.准备工作 1.大前提:已安装好node. npm. vue. vue-cli.stylus(此项目使用stylus来编译) 2.开发软件:Google Chrome(建议安装插件vue-devto ...

  9. (数据科学学习手札09)系统聚类算法Python与R的比较

    上一篇笔者以自己编写代码的方式实现了重心法下的系统聚类(又称层次聚类)算法,通过与Scipy和R中各自自带的系统聚类方法进行比较,显然这些权威的快捷方法更为高效,那么本篇就系统地介绍一下Python与 ...

  10. Java集合类面试题

    java.util包中包含了一系列重要的集合类,而对于集合类,主要需要掌握的就是它的内部结构,以及遍历集合的迭代模式. 1.Java集合框架是什么?说出一些集合框架的优点? 每种编程语言中都有集合,最 ...