~~~题面~~~

题解:

  因为数据范围不大,而且题目要求的是正方形,所以这道题有2种解法。

  1,st表。

    这种解法暴力好写好理解,但是较慢。我们设st[i][j][k]表示以(i, j)为左端点,向下/向右分别扩展$2^k$格的最大值,最小值同理,处理完后$n^2$枚举左端点取最优值即可。

    (此为早期代码,写丑了不要介意)

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 1010
#define ac 110
//#define getchar() *S ++
//char READ[1250000],*S = READ;
int n,a,b,ans = INT_MAX;
int st_max[AC][AC][], st_min[AC][AC][];
int k, q = ;
//二维ST表emmmm inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} inline int Max(int a, int b, int c, int d)
{
if(a > b && a > c && a > d) return a;
else if(b > c && b > d) return b;
else if(c > d) return c;
else return d;
} inline int Min(int a, int b, int c, int d)
{
if(a < b && a < c && a < d) return a;
else if(b < c && b < d) return b;
else if(c < d) return c;
else return d;
} void pre()
{
a = read(), b = read(), n = read();
for(R i = ; i <= a; i ++)
for(R j = ; j <= b; j ++)
st_max[i][j][] = st_min[i][j][] = read();
} void check()
{
for(R i = ; i <= a; i ++)
for(R j = ; j <= b; j ++)
{
printf("!!!(%d , %d)\nst_max:\n", i, j);
for(R l = ; l <= k; l ++)
printf("2^%d = %d\n", l, st_max[i][j][l]);
printf("\n");
printf("st_min:\n");
for(R l = ; l <= k; l ++)
printf("2^%d = %d\n", l, st_min[i][j][l]);
printf("\n\n");
}
} void build()
{
while(n > q) q <<= , ++ k;
-- k, q >>= ;
int pos=;
for(R l = ; l <= k; l ++)
{
for(R i = pos + ; i <= a; i ++)
{
for(R j = pos + ; j <= b; j ++)
{
st_max[i][j][l] = Max(st_max[i - pos][j][l - ], st_max[i][j - pos][l - ], st_max[i - pos][j - pos][l - ], st_max[i][j][l - ]);
st_min[i][j][l] = Min(st_min[i - pos][j][l - ], st_min[i][j - pos][l - ], st_min[i - pos][j - pos][l - ], st_min[i][j][l - ]);
}
}
pos <<= ;
}
} void work()
{
int maxn, minn;
for(R i = n; i <= a; i ++)
for(R j = n; j <= b; j ++)
{
maxn = Max(st_max[i][j][k], st_max[i - n + q][j - n + q][k], st_max[i - n + q][j][k], st_max[i][j - n + q][k]);
minn = Min(st_min[i][j][k], st_min[i - n + q][j - n + q][k], st_min[i - n + q][j][k], st_min[i][j - n + q][k]);
ans = min(ans, maxn - minn);
}
printf("%d\n", ans);
} int main()
{
// freopen("in.in", "r", stdin);
//fread(READ, 1, 1200000, stdin);
pre();
build();
//check();
work();
// fclose(stdin);
return ;
}

  2,单调队列。

    其实也好理解,,,但是感觉很多博客没有图所以意思讲的不是很清晰,这里就详细讲一下吧。

    类似于滑动窗口,如果没做过这题建议先理解这题的做法。

    可以看做此题就是滑动窗口的二维扩展版。那么我们已经有了在序列上获取指定区间大小的最大最小值的方法,要如何才能扩展到二维平面上呢?

    其实画个图就很好理解了。

    如果我们将每个红色区间的最大最小值都存在蓝色点上,那么只需要对蓝色点做一次滑动窗口,就可以获得指定大小的矩形最大最小值了。

    因为每个蓝色点已经代表了指定区间大小的行的最大最小值,所以再在这个基础上查询蓝点指定区间的最大最小值就相当于是在查询一个矩形了。

    

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 1100
#define LL long long int n, m, k, ans = INT_MAX;
int s[AC][AC], g[AC][AC], f[AC][AC]; struct node{
int x, id;
}; struct que{
node q[AC];int head, tail;
void init()
{
head = , tail = ;
} void add_max(int x, int id)
{
while(head <= tail && q[head].id <= id - k) ++ head;
while(head <= tail && q[tail].x <= x) -- tail;
q[++tail] = (node){x, id};
} void add_min(int x, int id)
{
while(head <= tail && q[head].id <= id - k) ++ head;
while(head <= tail && q[tail].x >= x) -- tail;
q[++tail] = (node){x, id};
} int top() {return q[head].x;}
}q1, q2; inline void upmin(int &a, int b)
{
if(b < a) a = b;
} inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} void pre()
{
n = read(), m = read(), k = read();
for(R i = ; i <= n; i ++)
for(R j = ; j <= m; j ++) s[i][j] = read();
} void build()//先对每一行求出来
{
for(R i = ; i <= n; i ++)//枚举行
{
q1.init(), q2.init();
for(R j = ; j <= m; j ++)//枚举列
{
q1.add_min(s[i][j], j), q2.add_max(s[i][j], j);
if(j >= k) f[i][j] = q1.top(), g[i][j] = q2.top();
}
}
} void work()//再求整体的
{
for(R i = k; i <= m; i ++)//先枚举列,再枚举行
{
q1.init(), q2.init();
for(R j = ; j <= n; j ++)
{
q1.add_min(f[j][i], j), q2.add_max(g[j][i], j);
if(j >= k) upmin(ans, q2.top() - q1.top());
}
}
printf("%d\n", ans);
} int main()
{
// freopen("in.in", "r", stdin);
pre();
build();
work();
// fclose(stdin);
return ;
}

[HAOI2007]理想的正方形 st表 || 单调队列的更多相关文章

  1. P2216 [HAOI2007]理想的正方形(dp+单调队列优化)

    题目链接:传送门 题目: 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表 ...

  2. [BZOJ1047][HAOI2007]理想的正方形 二维单调队列

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素.然后扫描每一 ...

  3. bzoj1047 [HAOI2007]理想的正方形——二维单调队列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...

  4. [Bzoj1047][HAOI2007]理想的正方形(ST表)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 题目虽然有一个n的限制,但求二维区间最值首先想到的还是RMQ,但是如果按照往常RM ...

  5. Codeforces Round #278 (Div. 1) B - Strip dp+st表+单调队列

    B - Strip 思路:简单dp,用st表+单调队列维护一下. #include<bits/stdc++.h> #define LL long long #define fi first ...

  6. [luogu2216 HAOI2007] 理想的正方形 (2dST表 or 单调队列)

    题目描述 有一个ab的整数组成的矩阵,现请你从中找出一个nn的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至第a ...

  7. [Bzoj4540][Hnoi2016] 序列(莫队 + ST表 + 单调队列)

    4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1567  Solved: 718[Submit][Status] ...

  8. P2216 [HAOI2007]理想的正方形

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  9. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

随机推荐

  1. Discuz论坛搜索下拉框插件openSug

    Discuz!只需安装openSug插件即可获得带有“搜索框提示”功能的搜索框,让您的Discuz搜索更便捷! 下载:https://www.opensug.org/faq/.../opensug.d ...

  2. 微信小程序横向滚动

    <scroll-view scroll-x="true" style=" white-space: nowrap; display: flex" > ...

  3. 【Js】JSON对象、JSON字符的使用总结

    JSON对象 / JSON字符串区别 抛出一个最常见的疑问:什么是“JSON对象”,什么是“JSON字符串”,它俩的区别是什么? 废话不多说,直接上代码. 1.JSON对象: // javascrip ...

  4. python学习之常用模块

  5. React16版本的新特性

    React16版本更新的新特性 2018年05月03日 21:27:56 阅读数:188 1.render方法的返回值类型:New render return types 之前的方式: class A ...

  6. java设计模式大全 Design pattern samples in Java(最经典最全的资料)

    java设计模式大全 Design pattern samples in Java(最经典最全的资料) 2015年06月19日 13:10:58 阅读数:11100 Design pattern sa ...

  7. 破解PHPStrom 10 and Pycharm

    注册时选择 License server http://idea.lanyus.com/ 然后点击OK Pycharm -- License server http://idea.lanyus.com ...

  8. Delphi实例之橡皮筋画图的实现

    Delphi实例之橡皮筋画图的实现 在<Delphi7基础教程>这本书的练习中提到过一个橡皮筋画图的例子,书上的源码是错误的!不知道是打印的错误还是本身源码就有问题,我将它改了过来. 在F ...

  9. ES6 export,import报错

    问题描述: 现有两个文件: profile.js const firstName = 'Michael'; const lastName = 'Jackson'; const year = 2018; ...

  10. Qt 在控件上面绘图 label,pushbutton。。。。。

    最近有点时间,就研究研究Qt ,提升一下自己 我记得我在刚开始学习Qt 的时候,想要在一个控件上面绘制图形,那就要构建一个新类来调用该控件的绘图函数 今天看到了狗哥的学习博客,感觉自己好渺小啊,按照狗 ...