动态规划:状压DP-斯坦纳树
最小生成树是最小斯坦纳树的一种特殊情况
最小生成树是在给定的点集和边中寻求最短网络使所有点连通
而最小斯坦纳树允许在给定点外增加额外的点,使生成的最短网络开销最小
BZOJ2595
题意是给定一个棋盘图。告诉你景点的位置
然后让你在一些格子上放置指定数量的志愿者使得景点之间可以连通
问你最少需要派遣多少枚志愿者
典型斯坦纳树问题
令f[i][j][k]表示已经连接的景点的集合为k时,包含点a[i][j]的最小值
集合k的引入标志着这是一种状压DP
即以(i,j)为根时,景点集合为k时的斯坦纳树。然后有两种转移
1.由两个子集合并得到集合k,即f[i][j][k]=f[i][j][x]+f[i][j][y]-a[i][j],x|y=k(用景点枚举子集)
2.由根的转移得到,即f[i][j][k]=f[x][y][k]+a[i][j],其中(i,j)和(x,y)相邻(最短路直接SPFA,同层之间的转移有环?)
#include<cstdio>
#include<queue>
//#include<iostream>
using namespace std;
const int INF=;
const int maxn=;
const int maxm=;
int n,m,K;
int bin[];
bool inq[maxn][maxm],vis[maxn][maxm];
int a[maxn][maxm];
int f[maxn][maxm][];
int dx[]={,,,-};
int dy[]={,-,,};
queue<pair<int,int> > q;
struct Data
{
int fit,sed,thd;
}pre[maxn][maxm][];
inline int read()
{
int x=;char ch=getchar();
while(ch>''||ch<'') ch=getchar();
while(ch>=''&&ch<='') {x=x*+ch-'';ch=getchar();}
return x;
}
void spfa(int sta)
{
//cout<<"###"<<sta<<endl;
while(!q.empty())
{
int x=q.front().first,y=q.front().second;
inq[x][y]=;q.pop();
//cout<<x<<" "<<y<<endl;
for(int k=;k<;k++)
{
int nx=x+dx[k],ny=y+dy[k];
if(x<||y<||x>n||y>m) continue;
if(f[nx][ny][sta]>f[x][y][sta]+a[nx][ny])
{
f[nx][ny][sta]=f[x][y][sta]+a[nx][ny];
pre[nx][ny][sta]=(Data){x,y,sta};
if(!inq[nx][ny])
{
q.push(make_pair(nx,ny));
inq[nx][ny]=;
}
}
}
}
}
void dfs(int x,int y,int sta)
{
if(x>INF||pre[x][y][sta].thd==) return;
vis[x][y]=;
Data t=pre[x][y][sta];
dfs(t.fit,t.sed,t.thd);
if(t.fit==x&&t.sed==y) dfs(x,y,sta-t.thd);
}
int main()
{
bin[]=;
for(int i=;i<;i++) bin[i]=bin[i-]<<;
n=read();m=read();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
a[i][j]=read();
if(a[i][j]==) K++;
}
//令f[i][j][k]表示已经连接的景点的集合为k时
//包含点a[i][j]的最小值
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int k=;k<bin[K];k++)
f[i][j][k]=pre[i][j][k].fit=INF;
K=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(a[i][j]==)
f[i][j][bin[K]]=,K++;
//最初始是one-hot,集合中只有自己景点
for(int sta=;sta<bin[K];sta++)
{
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
for(int s=sta&(sta-);s;s=sta&(s-))
{
int t=f[i][j][s]+f[i][j][sta-s]-a[i][j];
if(t<f[i][j][sta])
{
f[i][j][sta]=t;
pre[i][j][sta]=(Data){i,j,s};
}
}
if(f[i][j][sta]<INF)
q.push(make_pair(i,j)),inq[i][j]=;
}
}
spfa(sta);
}
int x,y;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(a[i][j]==)
{
x=i;y=j;break;
}
dfs(x,y,bin[K]-);
printf("%d\n",f[x][y][bin[K]-]);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(a[i][j]==) printf("x");
else if(vis[i][j]) printf("o");
else printf("_");
}
puts("");
}
return ;
}
这个题写完之后有一种莫名的打击感
动态规划:状压DP-斯坦纳树的更多相关文章
- luogu4294 [WC2008]游览计划(状压DP/斯坦纳树)
link 题目大意:给定一个网格图,有些点是关键点,选择格点有代价,求把所有关键点联通的最小代价 斯坦纳树模板题 斯坦纳树问题:给定一个图结构,有一些点是关键点,求把这些关键点联通的最小代价e 斯坦纳 ...
- [BZOJ4006][JLOI2015]管道连接 状压dp+斯坦纳树
4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1020 Solved: 552[Submit][Statu ...
- 状态压缩动态规划 状压DP
总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比 ...
- 动态规划---状压dp
状压dp,就是把动态规划之中的一个个状态用二进制表示,主要运用位运算. 这里有一道例题:蓝书P639猛兽军团1 [SCOI2005]互不侵犯 题目: 题目描述 在N×N的棋盘里面放K个国王,使他们互不 ...
- 状态压缩动态规划(状压DP)详解
0 引子 不要999,也不要888,只要288,只要288,状压DP带回家.你买不了上当,买不了欺骗.它可以当搜索,也可以卡常数,还可以装B,方式多样,随心搭配,自由多变,一定符合你的口味! 在计算机 ...
- 【状压dp】Trie 树 @中山纪念中学20170304
目录 Trie 树 PROBLEM 题目描述 输入 输出 样例输入 样例输出 SOLUTION CODE Trie 树 PROBLEM 题目描述 字母(Trie)树是一个表示一个字符串集合中所有字符串 ...
- BZOJ.2595.[WC2008]游览计划(DP 斯坦纳树)
题目链接 f[i][s]表示以i为根节点,当前关键点的连通状态为s(每个点是否已与i连通)时的最优解.i是枚举得到的根节点,有了根节点就容易DP了. 那么i为根节点时,其状态s的更新为 \(f[i][ ...
- HDU.3311.Dig The Wells(DP 斯坦纳树)
题目链接 \(Description\) 有n座庙.一共n+m个点,可以在任意一些点修建水井,不同位置花费不同:也可以某些点之间连无向边共享水.求使n座庙都有水的最小花费. \(Solution\) ...
- bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...
随机推荐
- P2678 跳石头(二分答案)
P2678 跳石头 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间 ...
- python 产生有序整数序列
其中一种方法 A = np.linspace(0,n,n)
- Linux下Expect 完成自动输入密码
今天要开发一个定时任务,然后加入cron列表中.但是有个问题摆在眼前,脚本的执行中需要输入数据库密码(貌似5.1版本以上不允许在-p后直接加密码,会报错) mysql -u root -p <& ...
- javascript的优美与鸡肋
--总结来自:<javascript语言精粹> 任何语言都有其优美的地方和其鸡肋的地方.避归一些语言的糟粕,能相应的降低bug出现的几率. 优美处: 函数是头等对象 基于原型继承的动态对象 ...
- 30分钟 带你浅入requirejs源码
因为最近项目想现实一个单页功能,用的是react ,然后看了一下react route,挖槽 gzip后16k? 然后我简单写了一个纯单页(不支持多页的单页,所有入口都经过rewrite跑到index ...
- Qt的index 用方法static_cast<CTableItem*>(index.internalPointer())取出来的值的成员都未初始化
mediaData = 0x01046380 {m_Deviceid={...} m_Title={...} m_Type={...} ...} 里面是这样的值,内存已经释放,但是没有remove:
- loadrunner创建测试脚本运行无响应 不记录脚本
解决一运行User Generator直接程序卡死无响应的办法. (1)“我的电脑”点右键->属性->高级 点选“性能”中的“设置” (2)打开对话框后,进入“数据执行保护”,如果空白框中 ...
- 「暑期训练」「Brute Force」 Optimal Point on a Line (Educational Codeforces Round 16, B)
题意 You are given n points on a line with their coordinates $x_i$. Find the point x so the sum of dis ...
- (原)自定义资源预览工具:DZAssetPreviewPlugin(1)
@author: 白袍小道 转载请说明,谢谢 题记 后续工具制作单独作为一本(小道用的是OneNote,这样发布简单点.*--*) 总计放到写完后. 目的 1.快速预览资源(因为大部分 ...
- Ubuntu18.04 + CUDA9.0 + cuDNN7.3 + Tensorflow-gpu-1.12 + Jupyter Notebook深度学习环境配置
目录 一.Ubuntu18.04 LTS系统的安装 1. 安装文件下载 2. 制作U盘安装镜像文件 3. 开始安装 二.设置软件源的国内镜像 1. 设置方法 2.关于ubuntu镜像的小知识 三.Nv ...