题目要求我们用一个32位整数整除另外一个整数,但是不允许我们使用除法,乘法和取模运算。


有趣的问题,下面说一下我的思路:

首先,先给出两个正整数除法运算的过程。假设a为被除数,而b为除数。在计算机中无符号整数除法div可以用下面的数学公式来表示:

即计算机除法中的a/b实际上是数学意义上a/b代表的有理数向下取整值。可以换一个方法来等价表示上面公式:

因此我们只需要能找到一个值c,满足下面条件即可:

但是我们不能从1到正无穷枚举c,因为如果a足够大且b足够小,那么c的值可能要上亿,上亿次的枚举消耗的时间非常可怕。但是我们不能使用乘法又该如何快速增大枚举值呢。这源于一个思路,v[0]=1,v[1]=v[0]+v[0],...,v[n]=v[n-1]+v[n-1]。发现了吗,v[i]=2^i,而32位整数绝对不会超过v[32],因此我们可以快速的利用v数组快速逼近c。

实际做法如下:

v and u are arrays with size 32

v[0] = 1, u[0] = b

limit = 0

for(; u[limit] < a; limit = limit + 1)

  u[limit  + 1] = u[limit ] + u[limit ]

  v[limit + 1] = v[limit] + v[limit]

这样我们就得到一个数组u,并且保证了u[0], ..., u[limit - 1] < a,且u[limit] >= a,实际上u[i] = b * 2^i。但是我们又该如何能够借助这样一个数组u计算出最终的c?

由于每个整数在计算机中都是由二进制表示而成,因此c必然等于2^i1+2^i2+...+2^in,其中i1,...in互不相同并按增序排序。因此我们所要找的实际上是这样一组i1,i2,...,in。由于2^n=1+2^0+2^1+2^2+...+2^(n-1),因此我们能得知2^in>2^i1+2^i2+...+2^in-1,换句话说有2^in<=c<2^(in+1),等价的形式为u[in]=b*2^in<=b*c=a<b*2^(in+1)=u[in+1]。到了这一步我们就知道如何快速地决定in,而对于in-1的计算,可以通过u[in-1]=b*2^in-1<=b*(c-2^in)=a-u[in]<b*2^(in-1+1)=u[in-1+1]得出,推理过程如上。这样不断地计算下去,我们就可以将i1,i2,...,in全部计算出来。

用代码展示上面的结论:

r = a, c = 0

for(i = limit; r >= b; i--)

  if(u[i] <= r)

    r = r - u[i]

    c = c + v[i]

综合上面我们已经得到了计算两个正整数的方式。上面这个算法的时间复杂度与空间复杂度均为常数O(1),因为不存在与输入相关联的冗余循环。

对于a,b均为负数的除法,有a/b=(-a)/(-b),因此可以直接用上述正整数除法的运算方式。对于a为负数的运算。计算机中对于带一个负数除法ndiv的定义如下:

但是我们不希望为带负数的重新定义一个新的算法,故我们要使用下面公式提供的计算c的方法:

故到了这里问题全面解决。当然这只是理论上的,实践上还会存在数值超出32位整数表示范围的情况,这需要读者自己对特殊情况进行处理。


最后提供一下AC代码,主要是需要对Integer.MIN_VALUE和越界做处理:

 package cn.dalt.leetcode;

 /**
  * Created by dalt on 2017/6/21.
  */
 public class DivideTwoIntegers {
     public int divide(int dividend, int divisor) {
         if (divisor == 0) {
             throw new ArithmeticException();
         }
         if (divisor == Integer.MIN_VALUE) {
             return dividend == Integer.MIN_VALUE ? 1 : 0;
         }
         if (dividend == Integer.MIN_VALUE) {
             if (divisor == -1) {
                 return Integer.MAX_VALUE;
             }
             if (divisor == 1) {
                 return Integer.MIN_VALUE;
             }
             if (divisor < 0) {
                 return divide(dividend - divisor, divisor) + 1;
             }
             return divide(dividend + divisor, divisor) - 1;
         }
         if (divisor < 0) {
             return divide(-dividend, -divisor);
         }
         if (dividend < 0) {
             return -divide(-dividend, divisor);
         }
         return div(dividend, divisor);
     }

     /**
      * Calculate floor(a/b)
      *
      * @param a a positive number
      * @param b a positive number
      * @return floor(a/b)
      */
     public int div(int a, int b) {
         int[] v = new int[32];
         int[] u = new int[32];
         v[0] = 1;
         u[0] = b;
         int limit = 0;
         for (; u[limit] <= a && u[limit] > 0; limit++) {
             u[limit + 1] = u[limit] + u[limit];
             v[limit + 1] = v[limit] + v[limit];
         }
         int c = 0;
         int r = a;
         for (limit--; r >= b; limit--) {
             if (r >= u[limit]) {
                 c += v[limit];
                 r -= u[limit];
             }
         }
         return c;
     }
 }

Leetcode:Divide Two Integers分析和实现的更多相关文章

  1. [LeetCode] Divide Two Integers 两数相除

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  2. LeetCode: Divide Two Integers 解题报告

    Divide Two Integers Divide two integers without using multiplication, division and mod operator. SOL ...

  3. Leetcode Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. 不用乘.除.求余操作,返回两整数相除的结果,结 ...

  4. [LeetCode] Divide Two Integers( bit + 二分法 )

    Divide two integers without using multiplication, division and mod operator. 常常出现大的负数,无法用abs()转换成正数的 ...

  5. leetcode Divide Two Integers python

    class Solution(object): def divide(self, dividend, divisor): """ :type dividend: int ...

  6. leetcode面试准备:Divide Two Integers

    leetcode面试准备:Divide Two Integers 1 题目 Divide two integers without using multiplication, division and ...

  7. [Leetcode][Python]29: Divide Two Integers

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 29: Divide Two Integershttps://oj.leetc ...

  8. leetcode第28题--Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. 分析:题目意思很容易理解,就是不用乘除法和模运 ...

  9. 【一天一道LeetCode】#29. Divide Two Integers

    一天一道LeetCode系列 (一)题目 Divide two integers without using multiplication, division and mod operator. If ...

随机推荐

  1. 用 WEKA 进行数据挖掘——第二章: 回归

    回归 回归是最为简单易用的一种技术,但可能也是最不强大(这二者总是相伴而来,很有趣吧).此模型可以简单到只有一个输入变量和一个输出变量(在 Excel 中称为 Scatter 图形,或 OpenOff ...

  2. Kotlin For Gank.io (干货集中营Kotlin实现)

    介绍 Kotlin,现在如火如荼,所以花了一点时间把之前的项目用Kotlin重构一下 原项目地址:https://github.com/onlyloveyd/GankIOClient 对应Kotlin ...

  3. 【MFC】picture控件 两种有细微差别的动态加载图片方法

    摘自:http://www.jizhuomi.com/software/193.html VS2010/MFC编程入门之二十七(常用控件:图片控件Picture Control) 分类标签: 编程入门 ...

  4. 动态加载css、js引用

    在js代码中动态的加载js.css文件的引用 function addJsCssByLink(type,url) { var doc=document; if(type="js") ...

  5. 剑指offer—第三章高质量代码(合并两个排序链表)

    题目:输入员两个递增排序的链表,合并这两个链表并使新的链表中的结点仍然是按照递增排序的. 思路:首先,定义两个头节点分别为Head1和Head2的链表,然后比较第一个节点的值,如果是Head1-> ...

  6. AVAWEB学习笔记 ---- 系列文章

    [JAVAWEB学习笔记]网上商城实战5:后台的功能模块 [JAVAWEB学习笔记]网上商城实战4:订单模块 [JAVAWEB学习笔记]网上商城实战3:购物模块和订单模块 [JAVAWEB学习笔记]网 ...

  7. winSCP连接FTP没有上传的权限

    错误: 原因: ftp用户为 1)查看ubantu中FTP文件夹目录所有者及权限,发现ftpName用户对FTP文件夹的权限为 “r-x”  ,仅有读,执行权限 2) chmod o=rwx ftp ...

  8. Hadoop体系结构之 Yarn

    1.1 YARN 基本架构 YARN是Hadoop 2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManage ...

  9. his移植问题

    报错信息 权限不够未截图 注意修改uploads文件权限chmod 777 uploads 修改域名 参照dxtzy项目,sourcetree备注

  10. Memcached数据存储方式

    1. memcached的数据存储方式被称为Slab Allocator,其基本方式是: ①:先把内存分成很多Slab,这个大小是预先规定好的,已解决内存碎片的问题.分配给Slab的内存空间被称为Pa ...