POJ 1970 The Game (DFS)
题目链接:http://poj.org/problem?id=1970
题意:
有一个19 × 19 的五子棋棋盘,其中“0”代表未放入棋子,“1”代表黑色棋子,”2“代表白色棋子,如果某方的棋子在横,纵,斜这四个方向的连子数(连着的棋子数)恰好为5,那么此方就可以获胜。给你某一刻棋盘上的棋子状态,问你在此刻是哪一方获胜,亦或是平局,平局时仅输出“0”;如果是黑色方获胜,那么输出“1“,白色方获胜输出“2”,并且在第二行输出五连子最左边的棋子的坐标,如果在纵方向五连子,那么输出最上面的那个棋子的坐标。
思路:
首先,对于一个棋子来说,它可以和八个方向的棋子连在一起形成连子,但是这里并用不着对棋子的八个方向进行搜索,因为八个方向实质上可以认为是四个方向,即只需对某个棋子的四个方向进行搜索就OK 了,方向的选择也会影响到程序的复杂性,这里的做法是选择一个当前棋子作为起点(0,0),对这个棋子的”“右上”(-1,1),“右”(0,1),“右下”(1,1),“下”(1,0)这四个方向进行搜索,原因是如果这四个方向能找到五连子,那么作为起点的棋子的坐标即是题目要求的最左边的棋子的坐标,可以降低程序复杂性。方向确定了,搜索的状态就确定了,对于每个棋子有四个状态,所以又需要一个辅助数组来标记棋子的某个状态是否已被搜索过,用一个三维数组visit[i][j][k]代表坐标为(i, j)的棋子其k方向是否已被搜索过,k取值为1~4。然后从左到右、从上到下遍历图,分别从四个方向搜索统计就好了。
由于“右上”方向在搜索中的特殊性,所以这里要解释一些东西。在往“右上”方向搜索的过程中,如果一个棋子的“右上”方向没被搜索过,那么应该尽可能的往这个方向搜索(即使这个方向的其他棋子之前已被搜索过了,这里仍然要进行搜索)。
比如:
0 0 0 0 1...
0 0 0 1 0...
0 0 1 0 0...
0 1 0 0 0...
1 0 0 0 0...
...
首先搜索到的肯定是第一行的”1“,可知连子数为 1个, 但此时并不满足; 再搜索第二行的“1”,此时第一行的1虽然已经搜索过了,但是还需要再搜索一遍,可得连子数为2个; 当搜索到第三行的"1"时,上面的两个"1"仍然要进行搜索统计,可得连子数为3个......底下的两个“1”也是同理,虽然这里可以用记忆化,但是由于搜索树的层数并不深,所以影响不大。
然后当“右上”方向的延伸结果为5时,这里还需要判断“右上”这个方向的反方向(即右下)有没有一样的棋子(否则会出现6连子,不符合题意),之所以要判断“右上”的反方向是否有多余的棋子,是因为位于“右下”的棋子搜索顺序在当前棋子之后,所以“右下”若有相同的棋子,有可能使得本来的5连子形成6连子,但是“右”的反方向“左”、“右下”的反方向“右上”、"下"的反方向“上”,这三个反方向上的棋子的搜索顺序都在当前棋子之前,不用考虑是否会出现这个现象。
代码:
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <stack>
#include <queue>
#include <algorithm>
#include <string> typedef long long LL;
using namespace std;
const int MAXN = ;
const int stepX[] = {, -, , , };//四个方向
const int stepY[] = {, , , , };
int visit[MAXN + ][MAXN + ][];//visit[i][j][k]表示位于[i][j]位置的棋子的k方向是否已被搜索过
int map[MAXN + ][MAXN + ];//存图
int cnt; void DFS(int x, int y, int id, int dire) {//x,y为坐标,id为1或者2,dire代表方位,即确定方位的进行搜索
visit[x][y][dire] = ;
int nex = x + stepX[dire], ney = y + stepY[dire];
if(map[nex][ney] == id){
++cnt;//统计连子数
DFS(nex, ney, id, dire);
}
} int main() {
//freopen("input", "r", stdin);
int t;
scanf("%d", &t);
while(t--) {
memset(visit, , sizeof(visit));
memset(map, , sizeof(map));
cnt = ;
for(int i = ; i <= ; i++) {
for(int j = ; j <= ; j++) {
scanf("%d", &map[i][j]);
}
}
int leftX = -, leftY = -;//五连子最左边棋子的坐标
int win = ;//获胜的标志
for(int i = ; i <= ; i++) {
for(int j = ; j <= ; j++) {
if(!map[i][j]) continue;
for(int k = ; k <= ; k++) {
if(!visit[i][j][k]) {
cnt = ;
DFS(i, j, map[i][j], k);
if(cnt == && map[i - stepX[k]][j - stepY[k]] != map[i][j]) {//判断是否为五连子且考虑反方向是否会造成六连子
win = map[i][j], leftX = i, leftY = j;
}
}
}
}
}
printf("%d\n", win);
if(win) printf("%d %d\n", leftX, leftY);
}
return ;
}
POJ 1970 The Game (DFS)的更多相关文章
- POJ 1321 棋盘问题 --- DFS
POJ 1321 题目大意:给定一棋盘,在其棋盘区域放置棋子,需保证每行每列都只有一颗棋子. (注意 .不可放 #可放) 解题思路:利用DFS,从第一行开始依次往下遍历,列是否已经放置棋子用一个数组标 ...
- POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)
POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...
- 【POJ - 1970】The Game(dfs)
-->The Game 直接中文 Descriptions: 判断五子棋棋局是否有胜者,有的话输出胜者的棋子类型,并且输出五个棋子中最左上的棋子坐标:没有胜者输出0.棋盘是这样的,如图 Samp ...
- poj 3321 Apple Tree dfs序+线段树
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Description There is an apple tree outsid ...
- 开篇,UVA 755 && POJ 1002 487--3279 (Trie + DFS / sort)
博客第一篇写在11月1号,果然die die die die die alone~ 一道不太难的题,白书里被放到排序这一节,半年前用快排A过一次,但是现在做的时候发现可以用字典树加深搜,于是乐呵呵的开 ...
- poj 1416 Shredding Company( dfs )
我的dfs真的好虚啊……,又是看的别人的博客做的 题目== 题目:http://poj.org/problem?id=1416 题意:给你两个数n,m;n表示最大数,m则是需要切割的数. 切割m,使得 ...
- poj 1129 Channel Allocation ( dfs )
题目:http://poj.org/problem?id=1129 题意:求最小m,使平面图能染成m色,相邻两块不同色由四色定理可知顶点最多需要4种颜色即可.我们于是从1开始试到3即可. #inclu ...
- poj 3373 Changing Digits (DFS + 记忆化剪枝+鸽巢原理思想)
http://poj.org/problem?id=3373 Changing Digits Time Limit: 3000MS Memory Limit: 65536K Total Submi ...
- POJ 1699 Best Sequence dfs
题目: http://poj.org/problem?id=1699 无意间A了..超时一次,加了一句 if(len > ans)return; 然后就A了,dfs题,没有太多好说的,代码写的效 ...
随机推荐
- JavaScript归并方法reduce()和reduceRight()
ECMAScript 5还新增了两个归并数组的方法:reduce()和reduceRight().这两个方法都会迭代数组的所有项,然后构建一个最终返回的值.其中,reduce()方法从数组的第一项开始 ...
- 附录A培训实习生-面向对象基础构造方法和带参数的构造方法(2)
构造方法,又叫构造函数,其实就是对类进行实例化.构造方法与类同名,无返回值,也不需要void,在new时候调用.也就是说,就是调用构造方法的时候. 所有类都有构造方法,如果你不编码则系统默认生成空的的 ...
- eclipse启运时显示:Workspace in use or cannot be created, choose a different one
The time when I runned Eclipse in my computer, it has this information displayed: WorkSpace *** in u ...
- [CF895C]Square Subsets
题目大意:给一个集合$S$($1\leq S_i\leq 70$),选择一个非空子集,使它们的乘积等于某个整数的平方的方法的数量. 求方案数,若两种方法选择的元素的索引不同,则认为是不同的方法. 题解 ...
- dva的基本用法
dva是一个状态管理工具,整合了redux,redux-saga,react-router,fetch等框架,目前只能用于react的状态管理 1. dva的models dva的主要作用还是整合了r ...
- 【bzoj2038】[国家集训队2010]小Z的袜子 莫队
莫队:就是一坨软软的有弹性的东西Duang~Duang~Duang~ 为了防止以左端点为第一关键字以右端点为第二关键字使右端点弹来弹去,所以让左端点所在块为关键字得到O(n1.5)的时间效率,至于分块 ...
- var result = eval('(' + data + ')');的学习
$.post("url", function(data) { //这里的function(data)这里的data是前端页面获取的后台的返回的数据: var result = ev ...
- Eclipse CDT 调用printf/cout 控制台(console)无输出
转摘自:http://blog.csdn.net/dj0379/article/details/6940836 症状描述: 用Eclipse调试程序,执行printf和cout函数,但是console ...
- 慕课网javascript 进阶篇 第九章 编程练习
把平常撸的码来博客上再撸一遍既可以加深理解,又可以理清思维.还是很纯很纯的小白,各位看官老爷们,不要嫌弃.最近都是晚睡,昨晚也不例外,两点多睡的.故,八点起来的人不是很舒服,脑袋有点晕呼呼,鉴于昨晚看 ...
- 数据结构&图论:K短路-可持久化可并堆
本来A*就可以搞定的题,为了怕以后卡复杂度,找了个这么个方法 现阶段水平不够就不补充算法分析部分了 对于图G,建立一个以终点t为起点的最短路径构成的最短路径树 (就是反着跑一遍最短路,然后对于一个不为 ...