更难的矩阵取数问题

给定一个m行n列的矩阵,矩阵每个元素是一个正整数,你现在 在左上角(第一行第一列),你需要走到右下角(第m行,第n列),每次只能朝右或者下走到相邻的位置,不能走出矩阵。然后再从右下角返回到左上角,这时只 能朝上或者左走,两次如果经过同一个格子,则该数字只计算一次,所有走过的数的总和作为你的得分,求最大的得分。

 
输入

第1行:2个数M N,中间用空格分隔,为矩阵的大小。(2 <= M, N <= 200)
第2 - N + 1行:每行M个数,中间用空格隔开,对应格子中奖励的价值。(1 <= A[i,j] <= 10000)
输出
输出能够获得的最大价值。
输入示例

3 3
1 3 3
2 1 3
2 2 1
输出示例

17
请选取你熟悉的语言,并在下面的代码框中完成你的程序,注意数据范围,最终结果会造成Int32溢出,这样会输出错误的答案。
不同语言如何处理输入输出,请查看下面的语言说明。
 
【分析】
 
没招了么?其实我们可以“两个人一起”dp(让两个人同时走)。

用dp[x1][y1][x2][y2]表示第一个人在(x1,y1) 并且第二个人在(x2,y2)时的最大值。
我们有初值dp[1][1][1][1] = a[1][1], 求的是dp[m][n][m][n]。
问题来了: 每个人走一步,状态转移是什么?
dp[x1][y1][x2][y2] = max{dp[x1’][y1’][x2’][y2’]} + a[x1][y1] + a[x2][y2]
其中(x1’,y1’)是(x1,y1)的邻居,(x2’,y2’)是(x2,y2)的邻居。
事实上,因为我们有这个等式提示我们其实只要用3维就可以表示这个矩阵,因为 y2 = x1 + y1 – x2所以那一维可以用走多少步表示出来。
 
dp[step + 1][x1][x2] = max{dp[step][x1’][x2’]} + a[x1][y1] + a[x2][y2]
 
图中为step做了编号。
然而这个dp并没有体现出走到相同格子,数字仅计算一次的要求。那么我们加上这个条件:如果x1 = x2,dp[step + 1][x1][x2] = max{dp[step][x1’][x2’]} + a[x1][y1]。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std ;
#define inf 0x3f3f3f3f
#define maxn 201
int M[maxn][maxn];
int dp[maxn<<][maxn][maxn];
int main()
{
int n,m,i,j,x1,x2;
scanf("%d%d",&m,&n);
for(i=;i<=n;++i)
for(j=;j<=m;++j)
scanf("%d",&M[i][j]);
memset(dp,,sizeof(dp)); for(i=;i<n+m;++i)
for(x1=;x1<=n&&i-x1>=;++x1)
for(x2=;x2<=n&&i-x2>=;++x2)
{ dp[i][x1][x2]=max(dp[i][x1][x2],dp[i-][x1-][x2-]+M[x1][i-x1+]+(x1==x2?:M[x2][i-x2+])); dp[i][x1][x2]=max(dp[i][x1][x2],dp[i-][x1-][x2]+M[x1][i-x1+]+(x1==x2?:M[x2][i-x2+])); dp[i][x1][x2]=max(dp[i][x1][x2],dp[i-][x1][x2-]+M[x1][i-x1+]+(x1==x2?:M[x2][i-x2+])); dp[i][x1][x2]=max(dp[i][x1][x2],dp[i-][x1][x2]+M[x1][i-x1+]+(x1==x2?:M[x2][i-x2+]));
//printf("dp[%d][%d][%d]=%d\n",i,x1,x2,dp[i][x1][x2]);
}
printf("%d\n",dp[n+m-][n][n]);
return ;
}

51nod 更难的矩阵取数问题(动态规划)的更多相关文章

  1. 51nod 更难的矩阵取数问题 + 滚动数组优化

    这里要求要走到终点再走回来,可以转化为两个人走. 那么我们可以先粗暴的设f[x1][y1][x2][y2]为第一个人走到(x1, y1), 第二个人走到(x2, y2)的最大价值. 那么这样空间会很大 ...

  2. [多路dp]更难的矩阵取数问题

    https://www.51nod.com/tutorial/course.html#!courseId=11&isCurrent=1 解题关键:1.注意i和j的最大取值都是n,k是i与j的和 ...

  3. 51Nod 1083 矩阵取数问题 | 动态规划

    #include "bits/stdc++.h" using namespace std; #define LL long long #define INF 0x3f3f3f3f3 ...

  4. 51Nod 1083 矩阵取数问题(矩阵取数dp,基础题)

    1083 矩阵取数问题 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下 ...

  5. 51Nod 1084 矩阵取数问题 V2 —— 最小费用最大流 or 多线程DP

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1084 1084 矩阵取数问题 V2  基准时间限制:2 秒 空 ...

  6. 51Nod 1084:矩阵取数问题 V2(多维DP)

    1084 矩阵取数问题 V2  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励 ...

  7. 【NOIP2007】矩阵取数

    因为傻逼写错高精度搞了一下午浪费好多时间,好想哭qaq 原题: 帅帅经常更同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij据为非负整数.游戏规则如下: 1. 每次取数时须从每 ...

  8. P1005 矩阵取数游戏 区间dp 高精度

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n \times mn×m的矩阵,矩阵中的每个元素a_{i,j}ai,j​均为非负整数.游戏规则如下: 每次取数时须从每行各取走一个元素,共n ...

  9. 1084 矩阵取数问题 V2

    1084 矩阵取数问题 V2 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下 ...

随机推荐

  1. [洛谷P2626]斐波那契数列(升级版)

    题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值.并把它分解质因数. 题解:乱搞 卡点:1.忘记取模 C++ Code: #include<cstdio> #i ...

  2. BZOJ 1040: [ZJOI2008]骑士 | 在基环外向树上DP

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1040 题解: 我AC了 是自己写的 超开心 的 考虑断一条边 这样如果根节点不选答案一定正确 ...

  3. cf 442 D. Olya and Energy Drinks

    cf 442 D. Olya and Energy Drinks(bfs) 题意: 给一张\(n \times m(n <= 1000,m <= 1000)\)的地图 给出一个起点和终点, ...

  4. Endnote 中文参考文献样式修改版

    http://blog.yuelong.info/post/endnote-gbt7714-2005.html 很多人不知道 EndNote 是自带中文参考文献引用样式的,即符合<文后参考文献著 ...

  5. Terminals Project

    https://github.com/Terminals-Origin Terminals Project Terminals is a secure, multi tab terminal serv ...

  6. border-image

    一.border-image的兼容性 border-image可以说是CSS3中的一员大将,将来一定会大放光彩,其应用潜力真的是非常的惊人.可惜目前支持的浏览器有限,仅 Firefox3.5,chro ...

  7. CSS中z-index全解析

    一.z-index解释 z-index属性决定了一个HTML元素的层叠级别,元素层叠级别是相对于元素在Z轴上(与X轴Y轴相对照)的位置而言.一个更高的z-index值意味着这个元素在叠层顺序中会更靠近 ...

  8. Spring学习之路——单例模式和多例模式

    在Spring中,bean可以被定义为两种模式:prototype(多例)和singleton(单例) singleton(单例):只有一个共享的实例存在,所有对这个bean的请求都会返回这个唯一的实 ...

  9. certbot 免费httos证书申请

    https://keelii.com/2016/06/12/free-https-cert-lets-encrypt-apply-install/

  10. Linux中短横线(-)小记

    在Linux中短横线(-)可以表示输出流,具体用法如下. 搭配cat cat - 如果指定cat的文件为-,表示从标准输入读取(和直接使用cat,好像没什么区别) 搭配| echo 123 | cat ...