由图可知,一个人无法被看到时,当且仅当有 人与原点 的斜率与他相同,且在他之前。

∴一个人可以被看到,设其斜率为y/x,当且仅当y/x不可再约分,即gcd(x,y)=1。

考虑将图按对角线划分开,两部分对称,

对其中的下半部分来说,枚举x,其所对应的y值(y<x)有几个与它互质的,则其对答案的贡献就是几。

这个值显然就是phi(x),所以枚举phi(x),将它们加起来即可。

 #include<cstdio>
using namespace std;
int n,phi[];
//bool get_phi(const int &x)//求单个数的phi
//{
// int ans=n;
// for(int i=2;i*i<=x;i++)
// if(n%i==0)
// {
// ans=ans/i*(i-1);
// while(n%i==0) n%=i;
// }
// if(n>1) ans=ans/n*(n-1);
//}
void phi_table()
{
phi[]=;//规定phi(1)=1;
for(int i=;i<=n;i++)
if(!phi[i])//若i是质数(类似筛法的思想)
for(int j=i;j<=n;j+=i)//i一定是j的质因数
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
int main()
{
scanf("%d",&n);
if(n==) printf("3\n");
else if(n==) puts("");
else
{
long long ans=;
phi_table();
for(int i=;i<n;i++) ans+=(long long)phi[i];
printf("%lld\n",ans<<|);
}
return ;
}

【数论】【欧拉函数】bzoj2190 [SDOI2008]仪仗队的更多相关文章

  1. 【数论·欧拉函数】SDOI2008仪仗队

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如右图 ...

  2. 数论-欧拉函数-LightOJ - 1370

    我是知道φ(n)=n-1,n为质数  的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...

  3. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  4. 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数

    [bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...

  5. 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法

    http://www.lydsy.com/JudgeOnline/problem.php?id=2190   裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...

  6. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  7. Codeforces_776E: The Holmes Children (数论 欧拉函数)

    题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...

  8. Codeforces 776E: The Holmes Children (数论 欧拉函数)

    题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...

  9. 数论 - 欧拉函数模板题 --- poj 2407 : Relatives

    Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11372   Accepted: 5544 Descri ...

  10. 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: ...

随机推荐

  1. Tile Cut~网络流入门题

    Description When Frodo, Sam, Merry, and Pippin are at the Green Dragon Inn drinking ale, they like t ...

  2. 编程技巧 - malloc()与free()

    1.要节省ram资源,可以使用malloc()动态申请内存,使用完再用free()释放掉,free()释放的是指针指向的内存空间,而不是指针. 2.如果某个大数组要在两个函数中使用,可以先定义一个全局 ...

  3. WebForm 在 Global.asax 中捕获全局异常

    /// <summary> /// 捕获全局异常 /// </summary> /// <param name="sender">sender& ...

  4. Binding and styling text to a RichTextBox in WPF

    http://www.codeproject.com/Articles/137209/Binding-and-styling-text-to-a-RichTextBox-in-WPF The Rich ...

  5. 全排列---(dfs)

    全排列输入一个数n,按字典序输出1-n的全排列 #include "cstdio" #include "cstring" ],ans[],n; void dfs ...

  6. swift方法 的写法,ui上拖拽的控件到controller里面的方法

    直接点xcode右上角三个按键中间一下,左右拆分为storyboard和controller, 点击button,按ctrl,然后拖拽到controller里面即可生成对应的点击事件在controll ...

  7. 【洛谷 P3846】 [TJOI2007]可爱的质数 (BSGS)

    题目链接 \(BSGS\)模板题..不会点这里 #include <cstdio> #include <cmath> #include <map> using na ...

  8. bzoj 1042 DP+容斥原理

    我们可以先DP预处理出W[I]代表买I的东西,每种钞票的个数 不做限制的方案数,那么对于每一组数据的限制,我们可以知道 W[S-C[I]*(D[I]+1)]C为面值,D为数量,这个代表第I种钞票一定 ...

  9. cookie和session的区别与会话跟踪技术

    会话跟踪技术: HTTP是一种无状态协议,每当用户发出请求时,服务器就会做出响应,客户端与服务器之间的联系是离散的.非连续的.当用户在同一网站的多个页面之间转换时,根本无法确定是否是同一个客户,会话跟 ...

  10. mysql内连接、左连接、右连接举例说明

    如下: CREATE TABLE tb ( id INT PRIMARY KEY, NAME VARCHAR (20) ) ; CREATE TABLE ta ( id INT PRIMARY KEY ...