[HAOI2015]按位或(FWT)
[Luogu3175] [BZOJ4036] [DarkBZOJ没有spj]
我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间
显然\(minmax\)容斥
\(E(max\{S\})=∑_{T⊆S}(−1)^{|T|+1}E(min\{T\})\)
那么问题就转化为了求每个集合中最早出现的\(1\)的期望时间
假如在\(k\)时刻出现,那么前\(k−1\)时刻一定都是取的补集的子集,记\(T\)补集的所有子集概率和为\(P\)
\(E(min\{T\})=∑_{k=1}^{∞}kP(1−P)^{k−1}\)
是一个离散变量的几何分布
设\(P(x=a)=p\)
那么取到\(a\)的期望为
\(E(x=a)=∑_{k=1}^{∞}k(1−p)^{k−1}p=p∑_{k=1}^{∞}k(1−p)^{k−1}\)
记\(f(x)=1+2x+3x^2+4x^3+…\)
则\(xf(x)=x+2x^2+3x^3+4x^4+…\)
则\((1−x)f(x)=1+x+x^2+x^3+…\)
对于\(0<x<1,(1−x)f(x)\)是收敛的,可以取到
\((1−x)f(x)=\frac{1}{1−x}\)
\(f(x)=\frac{1}{(1−x)^2}\)
所以
\(E(x=a)=p\frac{1}{p^2}=\frac{1}{p}\)
非常棒
于是有
\(E(min{T})=\frac{1}{1−P}\)
我们只需要求出所有集合的子集概率和就好了
其实就是或运算的\(FWT\)
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
}
const int MAXN=1<<20;
const double eps=1e-8;
double f[MAXN],ans;
int bit[MAXN],n,len;
int main(){
n=read();len=1<<n;
for(int i=0;i<len;i++) scanf("%lf",&f[i]);
for(int i=2;i<=len;i<<=1){
for(int j=0,p=i>>1;j<len;j+=i)
for(int k=j;k<j+p;k++)
f[k+p]+=f[k];//这里的特殊写法有助于理解FWT,FFT系列操作
}
for(int i=0;i<len;i++) bit[i]=bit[i>>1]+(i&1);
for(int i=1;i<len;i++){
double tmp=(1-f[(len-1)^i]);
if(tmp<eps){printf("INF\n");return 0;}
if(bit[i]&1) ans+=1.0/tmp;
else ans-=1.0/tmp;
}
printf("%.8lf\n",ans);
}
[HAOI2015]按位或(FWT)的更多相关文章
- 【BZOJ4036】[HAOI2015]按位或 FWT
[BZOJ4036][HAOI2015]按位或 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal的or ...
- BZOJ4036 [HAOI2015]按位或 FWT
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机 ...
- [BZOJ 4036][HAOI2015]按位或
4036: [HAOI2015]按位或 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 746 Solved: 4 ...
- bzoj4036 / P3175 [HAOI2015]按位或
bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\su ...
- [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)
[luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...
- [HAOI2015]按位或(min-max容斥,FWT,FMT)
题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...
- BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】
题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...
- bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】
其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...
- [HAOI2015]按位或(容斥+前缀和)
题目描述 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0<=p[i] ...
随机推荐
- shell 别名alias
在这说下 shell 命令 alias 别名 看个人爱好 设置. 直接执行命令 显示当前所有别名 alias 别名='新的别名' 该命令在当窗口关闭以后 会失效 想要永久生效 需要在 ...
- iis8不支持 aspnet_regiis.exe -iru 命令的解决办法
服务器版的限制,我看你给的提示说也可以使用 dism.exe 命令行. C:\> DISM /Online /Enable-Feature /FeatureName:WCF-HTTP-Activ ...
- 2-配置Andriod环境时的错误。。。Theme.AppCompat.Light
编译或运行时可能会出现错误: Error:Error retrieving parent for item: No resource found that matches the given name ...
- 如何在CentOS里切换操作系统所用的语言,中英文切换
操作系统CentOS 7.5,安装的时候选择的事中文,后来想改成英文 1.点左上角的“应用程序”---->再点“系统工具”----->“设置” 2.点“区域语言”,再点右侧的“汉语(中国) ...
- 洛谷P2569 [SCOI2010]股票交易
P2569 [SCOI2010]股票交易 题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股 ...
- Vue.js如何搭建本地dev server和json-server 模拟请求服务器
前言:vue-cli(版本更新),由原来的2.8.1升级为2.9.1.主要改变是原来在build文件夹下的dev-server.js删掉了,增加了webpack.dev.conf.js. 所以这次讲的 ...
- 使用原理视角看 Git
1. Git 的玩法 欢迎来到 Coding 技术小馆,我叫谭贺贺,目前我在 Coding.net 主要负责 WebIDE 与 Codeinsight 的开发.我今天带来的主要内容是 Git 的原理与 ...
- httpd和apache的区别
今天要配置集成服务器环境 apache + tomcat + php + jsp + mysql + sqlserver 去下载apache 发现有: apache_2.2.14-win32-x86 ...
- mybatis 获得一个map的返回集合
在使用mybatis 查询结果集,有时会有需求返回一个map比如表 id username 1 name1 2 name2 3 name3 希望的查询结果是一个map 并且以id为key 表为实体 ...
- WordCountPro
github项目地址:https://github.com/Hoyifei/SQ-T-Homework-WordCount-Advanced PSP表格 PSP2.1 PSP阶段 预估耗时 (分钟 ...