原题

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

讲解

动态规划

视频@ 哔哩哔哩 动态规划 or YouTube 动态规划

通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划的性质

  1. 最优子结构(optimal sub-structure):如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。
  2. 重叠子问题(overlapping sub-problem):动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。

状态转移方程

dp[i] = max(nums[i], nums[i] + dp[i - 1])

解释

  • i代表数组中的第i个元素的位置
  • dp[i]代表从0到i闭区间内,所有包含第i个元素的连续子数组中,总和最大的值

nums = [-2,1,-3,4,-1,2,1,-5,4]

dp = [-2, 1, -2, 4, 3, 5, 6, 1, 5]

时间复杂度

O(n)

参考

代码(C++)

class Solution {
public:
int maxSubArray(vector<int>& nums) {
// boundary
if (nums.size() == ) return ; // delares
vector<int> dp(nums.size(), );
dp[] = nums[];
int max = dp[]; // loop
for (int i = ; i < nums.size(); ++i) {
dp[i] = nums[i] > nums[i] + dp[i - ] ? nums[i] : nums[i] + dp[i - ];
if (max < dp[i]) max = dp[i];
} return max;
}
};

分治策略

视频@ 哔哩哔哩 分治策略 or YouTube 分治策略

 

分治算法是一个解决复杂问题的好工具,它可以把问题分解成若干个子问题,把子问题逐个解决,再组合到一起形成大问题的答案。

这个技巧是很多高效算法的基础,如排序算法快速排序归并排序

实现方式

循环递归

在每一层递归上都有三个步骤:

  1. 分解:将原问题分解为若干个规模较小,相对独立,与原问题形式相同的子问题。
  2. 解决:若子问题规模较小且易于解决 时,则直接解。否则,递归地解决各子问题。
  3. 合并:将各子问题的解合并为原问题的解。

注意事项

  • 边界条件,即求解问题的最小规模的判定

示意图

递归关系式

T(n) = 2T(n/2) + n

可以利用递归树的方式求解其时间复杂度(其求解过程在《算法导论》中文第三版 P51有讲解)

时间复杂度

O(nlgn)

代码(C++)

class Solution {
public:
int maxSubArray(vector<int>& nums) {
return find(nums, 0, nums.size() - 1);
} int find(vector<int>& nums, int start, int end) {
// boundary
if (start == end) {
return nums[start];
}
if (start > end) {
return INT_MIN;
} // delcare
int left_max = 0, right_max = 0, ml = 0, mr = 0;
int middle = (start + end) / 2; // find
left_max = find(nums, start, middle - 1);
right_max = find(nums, middle + 1, end);
// middle
// to left
for (int i = middle - 1, sum = 0; i >= start; --i) {
sum += nums[i];
if (ml < sum) ml = sum;
}
// to right
for (int i = middle + 1, sum = 0; i <= end; ++i) {
sum += nums[i];
if (mr < sum) mr = sum;
} // return
return max(max(left_max, right_max), ml + mr + nums[middle]);
}
};


原题:https://leetcode.com/problems/maximum-subarray

文章来源:胡小旭 => 小旭讲解 LeetCode 53. Maximum Subarray

小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略的更多相关文章

  1. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  2. Leetcode#53.Maximum Subarray(最大子序和)

    题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...

  3. LN : leetcode 53 Maximum Subarray

    lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...

  4. leetcode 53. Maximum Subarray 、152. Maximum Product Subarray

    53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...

  5. 41. leetcode 53. Maximum Subarray

    53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...

  6. LeetCode 53. Maximum Subarray(最大的子数组)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法

    Maximum Subarray  Find the contiguous subarray within an array (containing at least one number) whic ...

  8. [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  9. [LeetCode] 53. Maximum Subarray 最大子数组

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

随机推荐

  1. POJ 3616 Milking Time(加掩饰的LIS)

    传送门: http://poj.org/problem?id=3616 Milking Time Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  2. MapFile

    MapFile是排序后的SequenceFile, 这个排序是由开发者来保证的, 不是内存实现. 相当于对key作了一个分块索引,  只针对key. 缺点 1.文件不支持复写操作,不能向已存在的Seq ...

  3. 在body中的AngularJS模块

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  4. Openresty最佳案例 | 第6篇:OpenResty连接Mysql

    转载请标明出处: http://blog.csdn.net/forezp/article/details/78616698 本文出自方志朋的博客 centos 安装mysl Centos系统下安装my ...

  5. EventBus 基础篇

    最近在研究RxJava ,突然想起了事件分发另一个强大的框架Eventbus ,并且项目经常用到,特意整理了下. what is Eventbus? 官方的解释为: EventBus is a pub ...

  6. Django-rest-framework(七)swagger使用

    在我们接口开发完之后,需要交付给别人对接,在没有使用swagger的时候,我们需要单独编写一份api接口文档,由postman之类的工具进行请求得到返回的结果.而有了swagger之后,可以通过提取接 ...

  7. c/c++面试总结---c语言基础算法总结2

    c/c++面试总结---c语言基础算法总结2 算法是程序设计的灵魂,好的程序一定是根据合适的算法编程完成的.所有面试过程中重点在考察应聘者基础算法的掌握程度. 上一篇讲解了5中基础的算法,需要在面试之 ...

  8. jdbc执行过程 jar包下载

    工具和准备: MYSQL 8.0jar包: 链接:https://pan.baidu.com/s/1O3xuB0o1DxmprLPLEQpZxQ 提取码:grni 使用eclipse开发首先把jar包 ...

  9. mybatis笔记之一次插入多条数据sql语句写法

    <insert id="insertList" parameterType="java.util.List"> insert into balanc ...

  10. 详解Linux运维工程师

    运维工程师是从一个呆逼进化为苦逼再成长为牛逼的过程,前提在于你要能忍能干能拼,还要具有敏锐的嗅觉感知前方潮流变化.如:今年大数据,人工智能比较火……(相对表示就是 Python 比较火) 之前写过运维 ...