原题

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

讲解

动态规划

视频@ 哔哩哔哩 动态规划 or YouTube 动态规划

通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划的性质

  1. 最优子结构(optimal sub-structure):如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。
  2. 重叠子问题(overlapping sub-problem):动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。

状态转移方程

dp[i] = max(nums[i], nums[i] + dp[i - 1])

解释

  • i代表数组中的第i个元素的位置
  • dp[i]代表从0到i闭区间内,所有包含第i个元素的连续子数组中,总和最大的值

nums = [-2,1,-3,4,-1,2,1,-5,4]

dp = [-2, 1, -2, 4, 3, 5, 6, 1, 5]

时间复杂度

O(n)

参考

代码(C++)

class Solution {
public:
int maxSubArray(vector<int>& nums) {
// boundary
if (nums.size() == ) return ; // delares
vector<int> dp(nums.size(), );
dp[] = nums[];
int max = dp[]; // loop
for (int i = ; i < nums.size(); ++i) {
dp[i] = nums[i] > nums[i] + dp[i - ] ? nums[i] : nums[i] + dp[i - ];
if (max < dp[i]) max = dp[i];
} return max;
}
};

分治策略

视频@ 哔哩哔哩 分治策略 or YouTube 分治策略

 

分治算法是一个解决复杂问题的好工具,它可以把问题分解成若干个子问题,把子问题逐个解决,再组合到一起形成大问题的答案。

这个技巧是很多高效算法的基础,如排序算法快速排序归并排序

实现方式

循环递归

在每一层递归上都有三个步骤:

  1. 分解:将原问题分解为若干个规模较小,相对独立,与原问题形式相同的子问题。
  2. 解决:若子问题规模较小且易于解决 时,则直接解。否则,递归地解决各子问题。
  3. 合并:将各子问题的解合并为原问题的解。

注意事项

  • 边界条件,即求解问题的最小规模的判定

示意图

递归关系式

T(n) = 2T(n/2) + n

可以利用递归树的方式求解其时间复杂度(其求解过程在《算法导论》中文第三版 P51有讲解)

时间复杂度

O(nlgn)

代码(C++)

class Solution {
public:
int maxSubArray(vector<int>& nums) {
return find(nums, 0, nums.size() - 1);
} int find(vector<int>& nums, int start, int end) {
// boundary
if (start == end) {
return nums[start];
}
if (start > end) {
return INT_MIN;
} // delcare
int left_max = 0, right_max = 0, ml = 0, mr = 0;
int middle = (start + end) / 2; // find
left_max = find(nums, start, middle - 1);
right_max = find(nums, middle + 1, end);
// middle
// to left
for (int i = middle - 1, sum = 0; i >= start; --i) {
sum += nums[i];
if (ml < sum) ml = sum;
}
// to right
for (int i = middle + 1, sum = 0; i <= end; ++i) {
sum += nums[i];
if (mr < sum) mr = sum;
} // return
return max(max(left_max, right_max), ml + mr + nums[middle]);
}
};


原题:https://leetcode.com/problems/maximum-subarray

文章来源:胡小旭 => 小旭讲解 LeetCode 53. Maximum Subarray

小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略的更多相关文章

  1. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  2. Leetcode#53.Maximum Subarray(最大子序和)

    题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...

  3. LN : leetcode 53 Maximum Subarray

    lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...

  4. leetcode 53. Maximum Subarray 、152. Maximum Product Subarray

    53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...

  5. 41. leetcode 53. Maximum Subarray

    53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...

  6. LeetCode 53. Maximum Subarray(最大的子数组)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法

    Maximum Subarray  Find the contiguous subarray within an array (containing at least one number) whic ...

  8. [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

  9. [LeetCode] 53. Maximum Subarray 最大子数组

    Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...

随机推荐

  1. 【题解】洛谷P1002过河卒

    首先,一道入门DP 然而对于蒟蒻的我已经难到爆了好吗 第一点:动态转移方程 用DP的关键! 这题我们可以发现每一步的方案数由上面的那步加上左边的那步得到 所以自然而然的方程就出来了: f[i][k]= ...

  2. Windows下安装PCL点云库

    原文链接:http://blog.csdn.net/u012337034/article/details/38270109 简介:         在Windows下安装PCL点云库的方法大概有两种: ...

  3. 关于ProjectServer调用PSI 报Error GeneralReadOnlyColumn (20005) - column TS_ACT_FINISH_DATE错的解决方案

    TimesheetDataSet Table Actuals Row: TS_LINE_UID='f4b970f8-fb03-44d1-9997-cd31da42cb09' TS_ACT_START_ ...

  4. 史上最简单的 SpringCloud 教程 | 第一篇: 服务的注册与发现Eureka(Finchley版本)

    转载请标明出处: 原文首发于:https://www.fangzhipeng.com/springcloud/2018/08/30/sc-f1-eureka/ 本文出自方志朋的博客 一.spring ...

  5. Xcode 新建js文件

    Xcode 新建js文件

  6. Hibernate知识点小结(三)-->一对多与多对多配置

    一.多表关系与多表设计 1.多表关系        一对一:            表的设计原则(分表原则):                优化表的性能                基于语意化分表 ...

  7. Invalid default value for prop "value": Props with type Object/Array must use a factory function to return the default value.(props default 数组/对象的默认值应当由一个工厂函数返回)

    Invalid default value for prop "value": Props with type Object/Array must use a factory fu ...

  8. 小胖办证 wzoi

    小胖办证 题目描述: xuzhenyi要办个签证.办证处是一座M层的大楼,1<=M<=100. 每层楼都有N个办公室,编号为1..N(1<=N<=500).每个办公室有一个签证 ...

  9. ABAP术语-Error Message

    Error Message 原文:http://www.cnblogs.com/qiangsheng/archive/2008/01/30/1058283.html Information from ...

  10. Python学习笔记:第一天python基础

    目录 1. python简介 2. python的安装 3. 编写第一个helloword 4. 变量和常量 5. 数据类型 6. 输入 7. if语句 1. python简介 python是在198 ...