小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
讲解
动态规划
视频@ 哔哩哔哩 动态规划 or YouTube 动态规划
通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
动态规划的性质
- 最优子结构(optimal sub-structure):如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。
- 重叠子问题(overlapping sub-problem):动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。
状态转移方程
dp[i] = max(nums[i], nums[i] + dp[i - 1])
解释
- i代表数组中的第i个元素的位置
- dp[i]代表从0到i闭区间内,所有包含第i个元素的连续子数组中,总和最大的值
nums = [-2,1,-3,4,-1,2,1,-5,4]
dp = [-2, 1, -2, 4, 3, 5, 6, 1, 5]
时间复杂度
O(n)
参考
代码(C++)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// boundary
if (nums.size() == ) return ;
// delares
vector<int> dp(nums.size(), );
dp[] = nums[];
int max = dp[];
// loop
for (int i = ; i < nums.size(); ++i) {
dp[i] = nums[i] > nums[i] + dp[i - ] ? nums[i] : nums[i] + dp[i - ];
if (max < dp[i]) max = dp[i];
}
return max;
}
};
分治策略
视频@ 哔哩哔哩 分治策略 or YouTube 分治策略
分治算法是一个解决复杂问题的好工具,它可以把问题分解成若干个子问题,把子问题逐个解决,再组合到一起形成大问题的答案。
这个技巧是很多高效算法的基础,如排序算法(快速排序、归并排序)
实现方式
循环递归
在每一层递归上都有三个步骤:
- 分解:将原问题分解为若干个规模较小,相对独立,与原问题形式相同的子问题。
- 解决:若子问题规模较小且易于解决 时,则直接解。否则,递归地解决各子问题。
- 合并:将各子问题的解合并为原问题的解。
注意事项
- 边界条件,即求解问题的最小规模的判定
示意图

递归关系式
T(n) = 2T(n/2) + n
可以利用递归树的方式求解其时间复杂度(其求解过程在《算法导论》中文第三版 P51有讲解)
时间复杂度
O(nlgn)
代码(C++)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
return find(nums, 0, nums.size() - 1);
}
int find(vector<int>& nums, int start, int end) {
// boundary
if (start == end) {
return nums[start];
}
if (start > end) {
return INT_MIN;
}
// delcare
int left_max = 0, right_max = 0, ml = 0, mr = 0;
int middle = (start + end) / 2;
// find
left_max = find(nums, start, middle - 1);
right_max = find(nums, middle + 1, end);
// middle
// to left
for (int i = middle - 1, sum = 0; i >= start; --i) {
sum += nums[i];
if (ml < sum) ml = sum;
}
// to right
for (int i = middle + 1, sum = 0; i <= end; ++i) {
sum += nums[i];
if (mr < sum) mr = sum;
}
// return
return max(max(left_max, right_max), ml + mr + nums[middle]);
}
};
原题:https://leetcode.com/problems/maximum-subarray
文章来源:胡小旭 => 小旭讲解 LeetCode 53. Maximum Subarray
小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略的更多相关文章
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- Leetcode#53.Maximum Subarray(最大子序和)
题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...
- LN : leetcode 53 Maximum Subarray
lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...
- leetcode 53. Maximum Subarray 、152. Maximum Product Subarray
53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...
- 41. leetcode 53. Maximum Subarray
53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...
- LeetCode 53. Maximum Subarray(最大的子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) whic ...
- [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [LeetCode] 53. Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
随机推荐
- 用java语言编写的简单二叉树
package com.cjonline.foundation.evisa; public class TestTree { private int data=-1; private TestTree ...
- Win7下运行VC程序UAC权限问题 VC2010设置UAC权限方法
https://msdn.microsoft.com/en-us/library/bb756929.aspx 我使用的是VS2010,设为连接器清单文件的uac执行级别 直接项目右键---属性---配 ...
- linux 中$ 意思
grep -n sh$ text.txt 查找文件内容中以 Sh 结尾. grep -n ^a text.txt 文件文件内容中以 a 开头. grep -n ^$ text.txt ...
- BigDecimal运算(加、减、乘、除)
public class BigDecimalOperation { private BigDecimalOperation(){ } public static BigDecimal add(dou ...
- Largest Rectangle in a Histogram(hdu1506,单调栈裸题)
Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- boost::asio::ip::tcp中几个重要类型
typedef basic_stream_socket socket; 流式套接字,提供同/异步发送接收数据,连接,绑定,设置套接字选项等功能 对于socket中的connect()方法,它只针对某一 ...
- CentOS7.2中安装MongoDB
MongoDB是由C++编写的NoSQL的分布式文件数据库,用的json格式的k-value存储方式. MongoDB官网 https://www.mongodb.com 一.下载和安装 下载完后文件 ...
- [转]ThinkPHP5 隐藏index.php问题
ThinkPHP5 隐藏index.php问题 Apache,修改.htaccess文件 ----------------------------------------------------- R ...
- TP5部署服务器问题总结
及最近部署TP5遇到了很多坑,各种环境下都会出现一些问题,下面是我记录的排坑之路 先说最简单的lnmp一键安装包,我用的是1.5稳定版 安装命令:wget http://soft.vpser.net/ ...
- Mysql通过Adjacency List(邻接表)存储树形结构
转载自:https://www.jb51.net/article/130222.htm 以下内容给大家介绍了MYSQL通过Adjacency List (邻接表)来存储树形结构的过程介绍和解决办法,并 ...
