POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化)
A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number of discrete time steps according to a set of rules that describe the new state of a cell based on the states of neighboring cells. The order of the cellular automaton is the number of cells it contains. Cells of the automaton of order n are numbered from 1 to n.
The order of the cell is the number of different values it may contain. Usually, values of a cell of order m are considered to be integer numbers from 0 to m − 1.
One of the most fundamental properties of a cellular automaton is the type of grid on which it is computed. In this problem we examine the special kind of cellular automaton — circular cellular automaton of order n with cells of order m. We will denote such kind of cellular automaton as n,m-automaton.
A distance between cells i and j in n,m-automaton is defined as min(|i − j|, n − |i − j|). A d-environment of a cell is the set of cells at a distance not greater than d.
On each d-step values of all cells are simultaneously replaced by new values. The new value of cell i after d-step is computed as a sum of values of cells belonging to the d-enviroment of the cell i modulo m.
The following picture shows 1-step of the 5,3-automaton.
The problem is to calculate the state of the n,m-automaton after k d-steps.
Input
The first line of the input file contains four integer numbers n, m, d, and k (1 ≤ n ≤ 500, 1 ≤ m ≤ 1 000 000, 0 ≤ d < n⁄2 , 1 ≤ k ≤ 10 000 000). The second line contains n integer numbers from 0 to m − 1 — initial values of the automaton’s cells.
Output
Output the values of the n,m-automaton’s cells after k d-steps.
Sample Input
sample input #1
5 3 1 1
1 2 2 1 2 sample input #2
5 3 1 10
1 2 2 1 2
Sample Output
sample output #1
2 2 2 2 1 sample output #2
2 0 0 2 2
题意:题面很臭很长。大意是,有一个大小为N的环,给出M,K,D,以及N个数。我们进行K次操作,每次操作把距离当前点不超过D的累加到当前点,结果模M。
思路:因为要进行K次,每次的原则是一样的,我们可以想到用矩阵来优化,如果i能到达j,把么base[i][j]=1;则结果ans=A*(base^K)。
但是需要优化,时间复杂度为O(N^3*lgK)。我们发现矩阵是下一行由上一行右移一位而来,那么我们保存一维即可代表这个矩阵。同样的,我们只需要得到第一行的矩阵结果,就能得到整个矩阵的结果。
#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int N,Mod,D,K;
struct mat
{
int M[maxn];
mat(){ rep(i,,N) M[i]=; }
mat friend operator*(mat a,mat b){
mat res;
rep(k,,N)
rep(j,,N){
res.M[j]=(res.M[j]+(ll)a.M[k]*b.M[j-k+>?j-k+:j-k++N]%Mod)%Mod;
}
return res;
}
mat friend operator ^(mat a,int x)
{
mat res;rep(i,,N) res.M[]=;
while(x){
if(x&) res=res*a; a=a*a; x/=;
} return res;
} };
int main()
{
scanf("%d%d%d%d",&N,&Mod,&D,&K);
mat a,base;
rep(i,,N) scanf("%d",&a.M[i]);
rep(i,,N)
if(i-<=D||N-i+<=D||N-+i<=D) base.M[i]=;
a=a*(base^K);
rep(i,,N-) printf("%d ",a.M[i]);
printf("%d\n",a.M[N]);
return ;
}
POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化)的更多相关文章
- [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3048 Accepted: 12 ...
- POJ 3150 Cellular Automaton(矩阵快速幂)
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3504 Accepted: 1421 C ...
- POJ 3150 Cellular Automaton(矩阵高速幂)
题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1).假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部 ...
- POJ 3150 Cellular Automaton --矩阵快速幂及优化
题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有 ...
- POJ 3150 Cellular Automaton(矩阵乘法+二分)
题目链接 题意 : 给出n个数形成环形,一次转化就是将每一个数前后的d个数字的和对m取余,然后作为这个数,问进行k次转化后,数组变成什么. 思路 :下述来自here 首先来看一下Sample里的第一组 ...
- poj 3150 Cellular Automaton
首先来看一下Sample里的第一组数据.1 2 2 1 2经过一次变换之后就成了5 5 5 5 4它的原理就是a0 a1 a2 a3 a4->(a4+a0+a1) (a0+a1+a2) (a1+ ...
- 【POJ】3150 Cellular Automaton(矩阵乘法+特殊的技巧)
http://poj.org/problem?id=3150 这题裸的矩阵很容易看出,假设d=1,n=5那么矩阵是这样的 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 ...
- POJ3150—Cellular Automaton(循环矩阵)
题目链接:http://poj.org/problem?id=3150 题目意思:有n个数围成一个环,现在有一种变换,将所有距离第i(1<=i<=n)个数小于等于d的数加起来,对m取余,现 ...
- UVA 1386 - Cellular Automaton(循环矩阵)
UVA 1386 - Cellular Automaton option=com_onlinejudge&Itemid=8&page=show_problem&category ...
随机推荐
- spring boot 以jar的方式启动常用shell脚本
用spring boot框架做的项目,将第三方包全部打在jar里面,通过shell脚本启动和停止服务,常用的shell脚本模板如下: #!/bin/bashJAVA_OPTIONS_INITIAL=- ...
- LCA(最近公共祖先)专题(不定期更新)
Tarjan(离线)算法 思路: 1.任选一个点为根节点,从根节点开始. 2.遍历该点u所有子节点v,并标记这些子节点v已被访问过. 3.若是v还有子节点,返回2,否则下一步. 4.合并v到u上. 5 ...
- docker学习笔记1-- 用Toolbox安装Docker--介绍Docker Machine
使用的是Docker Toolbox,非Docker for Windows 一.docker的认识与安装(windows安装) http://blog.csdn.net/tina_ttl/artic ...
- 【LeetCode】【动态规划】Edit Distance
描述 Given two words word1 and word2, find the minimum number of operations required to convert word1 ...
- 第四篇、linux系统文件属性三
一.linux文件属性之文件权限体系介绍 二.linux中连接介绍 三.软连接 四.图解 五文件删除原理 主要内容
- 20145210姚思羽 《网络对抗技术》 Web安全基础实践
20145210姚思羽 <网络对抗技术> Web安全基础实践 实验后回答问题 1.SQL注入攻击原理,如何防御 ·SQL攻击的原理很简单,就是在用户名输入框里输入SQL语句,来欺骗数据库服 ...
- Vue.js学习笔记 第一篇 数据绑定
双花括号文本插值 先来个最简单的例子,看完之后立马会用Vue了,是不是很有成就感 <!DOCTYPE html> <html> <head> <meta ch ...
- Java 类及类的构造方法
类 类是一个模子,确定对象将会拥有的特性(属性)和行为(方法). 类的特点 类时对象的类型 具有相同属性和方法的一组对象的集合 构造方法 作用就是对类进行初始化. 如果你没有定议任何构造方法的形式,J ...
- RSA签名 python PHP demo 例子
python RSA+MD5签名demo: #!/usr/bin/env python2.7 #coding:utf-8 import base64 from Crypto.PublicKey imp ...
- shell运行java/Jar 脚本
1.Shell执行/调用Java/Jar程序 #!/bin/bash JAVA_HOME="$HOME/jdk" BASE_DIR=`dirname $0` if [ " ...