bzoj3816 矩阵变换
Description
Input
Output
Sample Input
5 10
0 1 0 2 3 0 0 4 0 5
2 0 3 0 0 1 0 5 4 0
4 2 1 0 0 0 3 0 5 0
0 3 0 4 0 5 0 1 2 0
1 0 0 3 2 4 5 0 0 0
5 10
0 1 0 2 3 0 0 4 0 5
2 0 3 0 0 1 0 5 4 0
4 2 1 0 0 0 3 0 5 0
0 3 0 4 0 5 0 1 2 0
1 0 0 3 2 4 5 0 0 0
Sample Output
5 4 3 1 2
explanation
两组输入数据是相同的。由于结果不唯一,你可以给出任意一组合法答案
HINT
正解:稳定婚姻问题。
我们可以发现,每一行更趋于选这一行靠前的数,每个数更趋于选它靠后的那一行。
进一步发现,如果每一行选的数没有$x$好,同时$x$选的行也没有这一行好,那么就会出现不合法情况。
所以这就是一个稳定婚姻问题,把行当成男生,数当成女生,跑一遍就行了。
#include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long using namespace std; int bg[][],gb[][],c[],p[],q[],Q[],n,m; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void work(){
n=gi(),m=gi();
for (RG int i=;i<=n;++i)
for (RG int j=;j<=n;++j) bg[i][j]=gb[i][j]=;
for (RG int i=;i<=n;++i) c[i]=;
for (RG int i=;i<=n;++i)
for (RG int j=,k;j<=m;++j){
k=gi(); if (!k) continue;
bg[i][++c[i]]=k,gb[k][i]=j;
}
RG int h=,t=;
for (RG int i=;i<=n;++i) Q[++t]=i,c[i]=p[i]=q[i]=;
while (h<t){
RG int x=Q[++h],v=bg[x][++c[x]];
if (!q[v]) q[v]=x,p[x]=v;
else if (gb[v][x]>gb[v][q[v]]) Q[++t]=q[v],q[v]=x,p[x]=v;
else --h;
}
for (RG int i=;i<=n;++i) printf("%d ",p[i]); puts(""); return;
} int main(){
#ifndef ONLINE_JUDGE
freopen("matrix.in","r",stdin);
freopen("matrix.out","w",stdout);
#endif
RG int T=gi();
while (T--) work();
return ;
}
bzoj3816 矩阵变换的更多相关文章
- [BZOJ3816][清华集训2014]矩阵变换(稳定婚姻问题)
3816: 矩阵变换 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 803 Solved: 578[Submit][Status][Discuss] ...
- 【BZOJ3816】【清华集训2014】矩阵变换 稳定婚姻问题
题目描述 给出一个\(n\)行\(m\)列的矩阵\(A\), 保证满足以下性质: 1.\(m>n\). 2.矩阵中每个数都是\([0,n]\)中的自然数. 3.每行中,\([1,n]\)中每个自 ...
- osg矩阵变换节点-----平移旋转缩放
osg矩阵变换节点-----平移旋转缩放 转自:http://www.cnblogs.com/ylwn817/articles/1973396.html 平移旋转缩放这个三个是osg矩阵操作中,最常见 ...
- OpenGL 矩阵变换
Overview 几何数据--顶点位置,和标准向量(normal vectors),在OpenGL 管道raterization 处理过程之前可通过顶点操作(Vertex Operation)和基本组 ...
- 二维图形的矩阵变换(三)——在WPF中的应用矩阵变换
原文:二维图形的矩阵变换(三)--在WPF中的应用矩阵变换 UIElement和RenderTransform 首先,我们来看看什么样的对象可以进行变换.在WPF中,用于呈现给用户的对象的基类为Vis ...
- 二维图形的矩阵变换(二)——WPF中的矩阵变换基础
原文:二维图形的矩阵变换(二)--WPF中的矩阵变换基础 在前文二维图形的矩阵变换(一)——基本概念中已经介绍过二维图像矩阵变换的一些基础知识,本文中主要介绍一下如何在WPF中进行矩阵变换. Matr ...
- hdu 5671 矩阵变换
Matrix Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Su ...
- 从UIImage的矩阵变换看矩阵运算的原理
1.矩阵的基本知识: struct CGAffineTransform { CGFloat a, b, c, d; CGFloat tx, ty;}; CGAffineTransform CGAf ...
- VS2012下基于Glut 矩阵变换示例程序:
也可以使用我们自己的矩阵运算来实现OpenGL下的glTranslatef相应的旋转变换.需要注意的是OpenGL下的矩阵是列优先存储的. 示例通过矩阵运算使得圆柱或者甜圈自动绕Y轴旋转,可以单击鼠标 ...
随机推荐
- java Collection中的排序问题
java Collection中的排序问题 这里讨论list.set.map的排序,包括按照map的value进行排序. 1)list排序 list排序可以直接采用Collections的sort方法 ...
- oracle 操作实例(一)----redolog 损坏恢复
一,实验前的准备 数据库全备保证自己没成功还能补救一下 vim full.sh export ORACLE_BASE=/u01/app/oracle export ORACLE_HOME=$ORACL ...
- AUTO Uninstaller【教程】AUTODESK系列软件MAYA,3DSMAX,CAD,INVENTOR,REVIT修复卸载工具 Windows x64位
小伙伴是不是遇到 MAYA/CAD/3DSMAX/INVENTOR/REVIT 安装失败或者安装不了的问题了呢?AUTODESK系列软件着实令人头疼,MAYA/CAD/3DSMAX/INVENTOR/ ...
- (转)详解Linux中SSH远程访问控制
详解Linux中SSH远程访问控制 原文:http://blog.51cto.com/dengqi/1260038 SSH:是一种安全通道协议,主要用来实现字符界面的远程登录,远程复制等功能(使用TC ...
- Ubuntu系统里下载安装配置redis-2.2.13.tar.gz
不多说,直接上干货! Redis是一个NoSQL数据库,在数据需要频繁更新,并且数据的访问热点范围比较广的应用场景下,Redis的效率很不错. 下面介绍Redis的安装过程,如下面的步骤所示. 第一步 ...
- Android 开发手记一NDK编程实例
在Android上,应用程序的开发,大部分基于Java语言来实现.要使用c或是c++的程序或库,就需要使用NDK来实现.NDK是Native Development Kit的简称.它是一个工具集,集成 ...
- OpenLayers3之ol.control.ZoomToExtent
controls: ol.control.defaults().extend([new ol.control.ZoomToExtent({ extent:[Number(box[]), Number( ...
- APP测试点集合
一.功能性测试: (1)根据产品需求文档编写测试用例 (2)软件设计文档编写用例 二.兼容性适配性测试: (1)Android.iOS版本的兼容性 (2)手机分辨率兼容性 (3)网络的兼容性:2G/3 ...
- 资源:开源Fuzzers工具列表 (以及其它fuzzing工具)
开源fuzzers / 开源fuzzing工具的最新列表(Fuzzers,没有标准中文翻译,可以理解为模糊测试工具或者模糊器) 如果你知道有需要添加的部分,那么请在这里或在推特上@Peerlyst来 ...
- centos-7.2 node.js免编译安装
cd /usr/local/ wget https://npm.taobao.org/mirrors/node/v8.9.3/node-v8.9.3-linux-x64.tar.gz tar -zxv ...