目前,深度学习和深度强化学习已经在实践中得到了广泛的运用。资源型博客sky2learn整理了15个深度学习和深入强化学习相关的在线课程,其中包括它们在自然语言处理(NLP),计算机视觉和控制系统中的应用教程。

这些课程涵盖了神经网络,卷积神经网络,循环网络和其变体,训练深度网络的困难,无监督表示学习,深度信念网络,深玻尔兹曼机器,深度Q学习,价值函数估计和优化以及蒙特卡洛树搜索等多种算法的基础知识。

吴恩达:深度学习专项

这系列课程侧重于讲解深度学习的基础和在不同领域的运用方式,如医疗健康,自动驾驶,手语阅读,音乐生成和自然语言处理等。课程共包含五个子课程,有视频讲座。同时,课程用户将获得使用TensorFlow解决实际问题的实践经验。

链接:https://www.coursera.org/specializations/deep-learning

CMU: 深度学习

该课程由苹果人工智能研究所主任Ruslan Salakhutdinov主导。课程首先讲解了一些例如前馈神经网络、反向传播、卷积模型等的基本知识。然后介绍深度学习中的要点,包括有向图和无向图模型,独立成分分析(ICA),稀疏编码,自动编码器,限制玻尔兹曼机(RBM),蒙特卡罗方法,深度信念网络,深度玻尔兹曼机和亥姆霍兹机。其他内容包括深度网络中的正则化和优化、序列建模和深度强化学习。

链接:http://www.cs.cmu.edu/~rsalakhu/10707/

斯坦福大学:深度学习理论(Stat385)

本课程讨论深度学习理论方面的知识。有8次特邀嘉宾讲座,这些嘉宾是深度学习、计算神经科学和统计学方面的领军人物。您将有机会在深度学习中,针对当前的研究趋势,探索他们观点的多样性和跨学科性。这门课有视频讲座。

链接:https://stats385.github.io/

Yoshua Bengio: 深度学习

该课程由蒙特利尔大学主导。课程首先回顾了神经网络的基本知识,包括感知器,反向传播算法和梯度优化。然后介绍了神经网络、概率图形模型、深度网络和表示学习等前沿知识。

链接:https://ift6266h16.wordpress.com/

UC Berkeley: 深度强化学习

该课程包括强化学习的基本知识:Q-学习和策略梯度,同时还包含了高级模型学习和预测、提取、奖励学习以及高级深度强化学习,例如信赖域策略梯度方法、actor-critic方法、探索方法。本门课有视频讲座。

链接:http://rll.berkeley.edu/deeprlcourse/

Yoshua Bengio: 深度学习与强化学习暑期学校

暑期学校是由Yoshua Bengio和他的同事们组织。课程包括了深度学习和强化学习两个方向,内容有两个领域的基本知识,研究趋势和最新发现。课程特别邀请这两个领域的主要学者和研究人员进行讲解。暑期学校有视频讲座。

链接:https://mila.quebec/en/cours/deep-learning-summer-school-2017/

Google & Udacity: 深度学习

该课程由谷歌首席科学家Vincent Vanhoucke和Udacity的Arpan Chakraborty共同创立。课程内容包括深度学习、深层神经网络、卷积神经网络和针对文本和序列的深层模型。课程作业要求使用tensorflow。这门课有视频讲座。

链接:https://cn.udacity.com/course/deep-learning–ud730

斯坦福大学:基于深度学习的自然语言处理(CS224n)

该课程是2017年冬斯坦福大学 “cs224n:深度学习中的自然语言处理”课程的压缩版,也是斯坦福大学2018课程的延续版。课程讨论了如何将深度学习应用在自然语言处理中,自然语言处理中的问题以及在自然语言处理中使用深度学习的限制。讲师有Christopher Manning和Richard Socher。

链接: 
https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

牛津大学:自然语言处理中的深度学习

本课程涵盖深度学习的基本原理以及如何将其应用在自然语言处理中。用户将学习如何定义这个领域中的数学问题,以及获得使用CPU和GPU的实际编程的经验。讲师分别来自牛津大学、CMU、DeepMind和英伟达公司。 这门课程包括视频讲座。

链接:https://github.com/oxford-cs-deepnlp-2017/lectures

李飞飞:视觉识别中的卷积神经网络(cs231n)

本课程将涵盖深度学习的基础知识,以及如何将深度学习技术应用于计算机视觉。学生将通过作业和最终项目获得如何训练和微调神经网络的实践经验。该课程主要使用Python语言。本课程包括视频讲座。

链接:http://cs231n.stanford.edu/

CMU: 深度强化学习与控制

本课程由苹果人工智能研究所主任Ruslan salakhutdinovat和CMU的Katerina Fragkiadaki主导。内容包括深度学习,强化学习,马尔可夫链决策过程(MDP),部分可观马尔可夫链决策过程(POMDPs),时序差分学习,Q学习,深度学习,深刻Q学习的基础知识。前沿话题包括最优化控制、轨道优化、层次强化学习和迁移学习。

链接:https://katefvision.github.io/

CMU: 深度学习入门

本课程由苹果公司人工智能研究所主任Ruslan Salakhutdinov主导,对深度学习做了一个快速而深入的介绍。课程共分为四个一小时时长的视频讲座,涵盖了监督学习,无监督学习,以及深度学习中的模型评估和开放式的研究问题等内容。

链接:https://simons.berkeley.edu/talks/tutorial-deep-learning

RLDM: 深度强化学习入门

课程由DeepMind的David Silver主导,发表于第二届强化学习与决策多学科会议(RLDM)上。在这一个半小时的视频教程中,用户将了解深度学习,强化学习的基本原理,以及如何将深度学习和强化学习以各种方式结合:即深度价值函数,深度策略,和深度模型。此外,用户还能向顶级专家学习如何处理这些方法中的发散问题。

链接:http://videolectures.net/rldm2015_silver_reinforcement_learning/

UC Berkeley: 深度强化学习入门

这是一个关于强化学习长达一小时的教程,配有视频讲座。用户将看到强化学习能有多厉害。

链接:https://simons.berkeley.edu/talks/pieter-abbeel-2017-3-28

MLSS: 深度强化学习入门

课程由OpenAI公司的研究科学家John Schulman主导,包括4个1小时长的视频讲座,并带有针对实验室问题的练习。

链接: 
https://www.youtube.com/playlist?list=PLjKEIQlKCTZYN3CYBlj8r58SbNorobqcp

原文地址:https://sky2learn.com/deep-learning-reinforcement-learning-online-courses-and-tutorials-theory-and-applications.html

李飞飞、吴恩达、Bengio等人的15大顶级深度学习课程的更多相关文章

  1. [C0] 人工智能大师访谈 by 吴恩达

    人工智能大师访谈 by 吴恩达 吴恩达采访 Geoffery Hinton Geoffery Hinton主要观点:要阅读文献,但不要读太多,绝对不要停止编程. Geoffrey Hinton:谢谢你 ...

  2. 2017年度好视频,吴恩达、李飞飞、Hinton、OpenAI、NIPS、CVPR、CS231n全都在

    我们经常被问:机器翻译迭代了好几轮,专业翻译的饭碗都端不稳了,字幕组到底还能做什么? 对于这个问题,我们自己感受最深,却又来不及解释,就已经边感受边做地冲出去了很远,摸爬滚打了一整年. 其实,现在看来 ...

  3. 我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)【中英双语】

    我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ t ...

  4. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  5. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  6. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  7. 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...

  8. 机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 http://www.ai-start.com/

    机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 GNU Octave    开源  MatLab http://www.ai-start.com/ https://zhuanlan.zhihu ...

  9. 【吴恩达课后编程作业】第二周作业 - Logistic回归-识别猫的图片

    1.问题描述 有209张图片作为训练集,50张图片作为测试集,图片中有的是猫的图片,有的不是.每张图片的像素大小为64*64 吴恩达并没有把原始的图片提供给我们 而是把这两个图片集转换成两个.h5文件 ...

随机推荐

  1. knowledgeroot 配置

    首先下载 KnowledgeRoot 的安装包,就是一个压缩文件,解压缩后放到 WebRoot 下面 在浏览器中打开网站,自动提示进行安装,安装的过程很简单,安装结束后即可以使用. 安装包创建的数据库 ...

  2. Selenium webdriver Java 高级应用

    对于这一段还蛮有感慨的,只想说,代码还是需要自己去敲的. 1. 改变用户代理 import org.junit.AfterClass; import org.junit.BeforeClass; im ...

  3. windows系统下GCC的安装与配置

    刚开始看 C++ Primer,看到编译器的部分,自己搜了搜怎么搭建GCC,搜到以下内容,复制过来留个印象: windows系统下GCC的安装方法,以及一些环境变量的配置,如果对GCC不是很清楚,关于 ...

  4. iOS即时通讯输入框随字数自适应高度

    代码地址如下:http://www.demodashi.com/demo/13210.html 前言 本人最近在研究socket与聊天界面的UI,在写聊天界面UI的时候是模仿微信的界面其中的文字输入框 ...

  5. iOS开发-关闭/收起键盘方法总结

    前言:作为IOS开发人员,需要经常和表单打交道.因此我对收起键盘的方法作了下总结,IOS收起键盘有三种方法(如果有其它收起键盘的方法请在留言区指错). 收起键盘的方法: 1.点击Return按扭时收起 ...

  6. PHP-php-fpm配置优化

    前言: 1.少安装PHP模块, 费内存 2.调高linux内核打开文件数量,可以使用这些命令(必须是root帐号)(我是修改/etc/rc.local,加入ulimit -SHn 51200的) ec ...

  7. /u200B 8203 Zero-width space 问题

    [TestMethod] public void TestBom() { string str = "123​";//这个字符串是错误的有问题 长度4 ).Select(x =&g ...

  8. 用Darwin开发RTSP级联server(拉模式转发)(附源代码)

    源代码下载地址:https://github.com/EasyDarwin orwww.easydarwin.org 在博客 在Darwin进行实时视频转发的两种模式 中,我们描写叙述了流媒体serv ...

  9. CS0016: 未能写入输出文件“c:\Windows\Microsoft.NET\Framework\v4.0.30319\Temporary ASP.NET Files\

    解决方法: 1:设置 C:\windows\temp 文件夹安全权限  添加用户 NETWORK SERVICE  写入和读取权限 2:设置 C:\windows\temp 文件夹安全权限  添加用户 ...

  10. Codeforces Round #297 (Div. 2) 525C Ilya and Sticks(脑洞)

    C. Ilya and Sticks time limit per test 2 seconds memory limit per test 256 megabytes input standard ...