目前,深度学习和深度强化学习已经在实践中得到了广泛的运用。资源型博客sky2learn整理了15个深度学习和深入强化学习相关的在线课程,其中包括它们在自然语言处理(NLP),计算机视觉和控制系统中的应用教程。

这些课程涵盖了神经网络,卷积神经网络,循环网络和其变体,训练深度网络的困难,无监督表示学习,深度信念网络,深玻尔兹曼机器,深度Q学习,价值函数估计和优化以及蒙特卡洛树搜索等多种算法的基础知识。

吴恩达:深度学习专项

这系列课程侧重于讲解深度学习的基础和在不同领域的运用方式,如医疗健康,自动驾驶,手语阅读,音乐生成和自然语言处理等。课程共包含五个子课程,有视频讲座。同时,课程用户将获得使用TensorFlow解决实际问题的实践经验。

链接:https://www.coursera.org/specializations/deep-learning

CMU: 深度学习

该课程由苹果人工智能研究所主任Ruslan Salakhutdinov主导。课程首先讲解了一些例如前馈神经网络、反向传播、卷积模型等的基本知识。然后介绍深度学习中的要点,包括有向图和无向图模型,独立成分分析(ICA),稀疏编码,自动编码器,限制玻尔兹曼机(RBM),蒙特卡罗方法,深度信念网络,深度玻尔兹曼机和亥姆霍兹机。其他内容包括深度网络中的正则化和优化、序列建模和深度强化学习。

链接:http://www.cs.cmu.edu/~rsalakhu/10707/

斯坦福大学:深度学习理论(Stat385)

本课程讨论深度学习理论方面的知识。有8次特邀嘉宾讲座,这些嘉宾是深度学习、计算神经科学和统计学方面的领军人物。您将有机会在深度学习中,针对当前的研究趋势,探索他们观点的多样性和跨学科性。这门课有视频讲座。

链接:https://stats385.github.io/

Yoshua Bengio: 深度学习

该课程由蒙特利尔大学主导。课程首先回顾了神经网络的基本知识,包括感知器,反向传播算法和梯度优化。然后介绍了神经网络、概率图形模型、深度网络和表示学习等前沿知识。

链接:https://ift6266h16.wordpress.com/

UC Berkeley: 深度强化学习

该课程包括强化学习的基本知识:Q-学习和策略梯度,同时还包含了高级模型学习和预测、提取、奖励学习以及高级深度强化学习,例如信赖域策略梯度方法、actor-critic方法、探索方法。本门课有视频讲座。

链接:http://rll.berkeley.edu/deeprlcourse/

Yoshua Bengio: 深度学习与强化学习暑期学校

暑期学校是由Yoshua Bengio和他的同事们组织。课程包括了深度学习和强化学习两个方向,内容有两个领域的基本知识,研究趋势和最新发现。课程特别邀请这两个领域的主要学者和研究人员进行讲解。暑期学校有视频讲座。

链接:https://mila.quebec/en/cours/deep-learning-summer-school-2017/

Google & Udacity: 深度学习

该课程由谷歌首席科学家Vincent Vanhoucke和Udacity的Arpan Chakraborty共同创立。课程内容包括深度学习、深层神经网络、卷积神经网络和针对文本和序列的深层模型。课程作业要求使用tensorflow。这门课有视频讲座。

链接:https://cn.udacity.com/course/deep-learning–ud730

斯坦福大学:基于深度学习的自然语言处理(CS224n)

该课程是2017年冬斯坦福大学 “cs224n:深度学习中的自然语言处理”课程的压缩版,也是斯坦福大学2018课程的延续版。课程讨论了如何将深度学习应用在自然语言处理中,自然语言处理中的问题以及在自然语言处理中使用深度学习的限制。讲师有Christopher Manning和Richard Socher。

链接: 
https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

牛津大学:自然语言处理中的深度学习

本课程涵盖深度学习的基本原理以及如何将其应用在自然语言处理中。用户将学习如何定义这个领域中的数学问题,以及获得使用CPU和GPU的实际编程的经验。讲师分别来自牛津大学、CMU、DeepMind和英伟达公司。 这门课程包括视频讲座。

链接:https://github.com/oxford-cs-deepnlp-2017/lectures

李飞飞:视觉识别中的卷积神经网络(cs231n)

本课程将涵盖深度学习的基础知识,以及如何将深度学习技术应用于计算机视觉。学生将通过作业和最终项目获得如何训练和微调神经网络的实践经验。该课程主要使用Python语言。本课程包括视频讲座。

链接:http://cs231n.stanford.edu/

CMU: 深度强化学习与控制

本课程由苹果人工智能研究所主任Ruslan salakhutdinovat和CMU的Katerina Fragkiadaki主导。内容包括深度学习,强化学习,马尔可夫链决策过程(MDP),部分可观马尔可夫链决策过程(POMDPs),时序差分学习,Q学习,深度学习,深刻Q学习的基础知识。前沿话题包括最优化控制、轨道优化、层次强化学习和迁移学习。

链接:https://katefvision.github.io/

CMU: 深度学习入门

本课程由苹果公司人工智能研究所主任Ruslan Salakhutdinov主导,对深度学习做了一个快速而深入的介绍。课程共分为四个一小时时长的视频讲座,涵盖了监督学习,无监督学习,以及深度学习中的模型评估和开放式的研究问题等内容。

链接:https://simons.berkeley.edu/talks/tutorial-deep-learning

RLDM: 深度强化学习入门

课程由DeepMind的David Silver主导,发表于第二届强化学习与决策多学科会议(RLDM)上。在这一个半小时的视频教程中,用户将了解深度学习,强化学习的基本原理,以及如何将深度学习和强化学习以各种方式结合:即深度价值函数,深度策略,和深度模型。此外,用户还能向顶级专家学习如何处理这些方法中的发散问题。

链接:http://videolectures.net/rldm2015_silver_reinforcement_learning/

UC Berkeley: 深度强化学习入门

这是一个关于强化学习长达一小时的教程,配有视频讲座。用户将看到强化学习能有多厉害。

链接:https://simons.berkeley.edu/talks/pieter-abbeel-2017-3-28

MLSS: 深度强化学习入门

课程由OpenAI公司的研究科学家John Schulman主导,包括4个1小时长的视频讲座,并带有针对实验室问题的练习。

链接: 
https://www.youtube.com/playlist?list=PLjKEIQlKCTZYN3CYBlj8r58SbNorobqcp

原文地址:https://sky2learn.com/deep-learning-reinforcement-learning-online-courses-and-tutorials-theory-and-applications.html

李飞飞、吴恩达、Bengio等人的15大顶级深度学习课程的更多相关文章

  1. [C0] 人工智能大师访谈 by 吴恩达

    人工智能大师访谈 by 吴恩达 吴恩达采访 Geoffery Hinton Geoffery Hinton主要观点:要阅读文献,但不要读太多,绝对不要停止编程. Geoffrey Hinton:谢谢你 ...

  2. 2017年度好视频,吴恩达、李飞飞、Hinton、OpenAI、NIPS、CVPR、CS231n全都在

    我们经常被问:机器翻译迭代了好几轮,专业翻译的饭碗都端不稳了,字幕组到底还能做什么? 对于这个问题,我们自己感受最深,却又来不及解释,就已经边感受边做地冲出去了很远,摸爬滚打了一整年. 其实,现在看来 ...

  3. 我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)【中英双语】

    我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ t ...

  4. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  5. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  6. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  7. 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...

  8. 机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 http://www.ai-start.com/

    机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 GNU Octave    开源  MatLab http://www.ai-start.com/ https://zhuanlan.zhihu ...

  9. 【吴恩达课后编程作业】第二周作业 - Logistic回归-识别猫的图片

    1.问题描述 有209张图片作为训练集,50张图片作为测试集,图片中有的是猫的图片,有的不是.每张图片的像素大小为64*64 吴恩达并没有把原始的图片提供给我们 而是把这两个图片集转换成两个.h5文件 ...

随机推荐

  1. TestNG+ReportNG+Maven优化测试报告

    转载:https://www.cnblogs.com/hardy-test/p/5354733.html 首先在eclipse里面创建一个maven项目,具体要配置maven环境,请自行百度搭配环境. ...

  2. python——TypeError: 'str' does not support the buffer interface

    import socket import sys port=51423 host="localhost" data=b"x"*10485760 #在字符串前加 ...

  3. servlet--百度百科

    Servlet(Server Applet),全称Java Servlet, 未有中文译文.是用Java编写的服务器端程序.其主要功能在于交互式地浏览和修改数据,生成动态Web内容.狭义的Servle ...

  4. 网站相关技术探究keepalive_timeout(转)

    网站相关技术探究keepalive设多少: /proc/$PID/fd/$number  0:标准输入 1:标准输出 2:标准错误   Test: [root@KTQT ~]# ll /proc/12 ...

  5. SSH——增删改的实现二

    二.批量删除 逻辑删除取派员,将取派员的deltag改为“1” 1. 为“作废”按钮绑定事件 //批量删除取派员 function doDelete(){ //获得选中的行 var rows = $( ...

  6. iOS开发-Swift获取手机设备信息(UIDevice)

    使用UiDevice获取设备信息 获取设备名称 let name = UIDevice.currentDevice().name 获取设备系统名称 let systemName = UIDevice. ...

  7. 在php中修改cookie值遇到的奇怪问题

    本想修改cookie的值比较简单,结果测试发现并不是. 刚开始实现cookie修改的思路:先删除以前的cookie值,再创建一个新的. setcookie('name',value,time()-1) ...

  8. mybatis学习笔记(14)-查询缓存之中的一个级缓存

    mybatis学习笔记(14)-查询缓存之中的一个级缓存 标签: mybatis mybatis学习笔记14-查询缓存之中的一个级缓存 查询缓存 一级缓存 一级缓存工作原理 一级缓存測试 一级缓存应用 ...

  9. linux. -bash: fork: retry: Resource temporarily unavailable错误

    切换用户或登陆服务器后执行ls命令报错: -bash: fork: retry: Resource temporarily unavailable 上面这段错误提示的本质是Linux操作系统无法创建更 ...

  10. BZOJ 1260 CQOI2007 涂色paint 动态规划

    题目大意:给定一块木板,上面每一个位置有一个颜色,问最少刷几次能达到这个颜色序列 动态规划,能够先去重处理(事实上不是必需),令f[i][j]代表将i開始的j个位置刷成对应颜色序列的最小次数.然后状态 ...