【BZOJ2064】分裂 状压DP
【BZOJ2064】分裂
Description
Input
Output
Sample Input
Sample Output
题解:传说中的“传言可不,会意可只”的状压DP?(%neither_nor姜犇)
首先考虑最坏的情况,我们先将所有国家合到一起,然后再把它们一个个拆开,需要次数为n+m-2。
如果我们想让答案更优,方法就是先将所有国家合成x个国家,然后再将x个国家拆开,需要次数为n+m-2x,显然我们的x越大越好。也就是说,我们将把初始状态和结束状态分成尽可能多的集合,使得每个初始状态的集合都对应一个与它面积和相等的、结束状态的集合。
先想一种naive的做法:设f[i][j]表示已选出初始状态中的国家的状态为i(看不懂就直接认为i是一个状态),已选出结束状态中的国家的状态为j,所能形成的最多集合数。然后我们可以采用枚举子集的方法,时间复杂度惊人~
然后怎么办呢?神犇hz_lrd告诉我们,可以先假设我们已经知道了中间的状态,设初始状态中的集合为a,b,c,d,结束状态中的集合为A,B,C,D,然后我们把这些集合铺在两个序列上。第一个序列中依次放入集合a,b,c,d中的所有国家,第二个序列中依次放入A,B,C,D中的所有国家,然后对这两个序列求前缀和,其中a、A处的前缀和一定是相同的,b、B,c、C处也都相等,这就将问题转化成了:将两个序列随机排序,使得它们尽可能多的位置前缀和相等。
所以我们回到那个naive的做法,发现枚举子集根本没有必要,我们只需要枚举每个国家,一个一个加到两个状态i或j中去,一旦两个状态中的面积和相等,需要的次数就-2。为了转移更快,我们预处理出所有状态的面积和,然后转移就是O(2^(n+m)*(n+m))的了。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n,m;
int sn[1<<10],sm[1<<10],f[1<<10][1<<10],vn[12],vm[12];
int main()
{
int i,j,k;
scanf("%d",&n);
for(i=1;i<=n;i++) scanf("%d",&vn[i]);
scanf("%d",&m);
for(i=1;i<=m;i++) scanf("%d",&vm[i]);
for(i=0;i<(1<<n);i++) for(j=1;j<=n;j++) if(i&(1<<j-1)) sn[i]+=vn[j];
for(i=0;i<(1<<m);i++) for(j=1;j<=m;j++) if(i&(1<<j-1)) sm[i]+=vm[j];
for(i=0;i<(1<<n);i++)
{
for(j=0;j<(1<<m);j++)
{
for(k=1;k<=n;k++) if(i&(1<<k-1)) f[i][j]=max(f[i][j],f[i^(1<<k-1)][j]);
for(k=1;k<=m;k++) if(j&(1<<k-1)) f[i][j]=max(f[i][j],f[i][j^(1<<k-1)]);
f[i][j]+=(sn[i]==sm[j])<<1;
}
}
printf("%d",n+m+2-f[(1<<n)-1][(1<<m)-1]);
return 0;
}
【BZOJ2064】分裂 状压DP的更多相关文章
- [BZOJ2064]分裂 状压dp
2064: 分裂 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 656 Solved: 404[Submit][Status][Discuss] De ...
- BZOJ 2064: 分裂( 状压dp )
n1+n2次一定可以满足..然后假如之前土地集合S1的子集subs1和之后土地集合S2的子集subs2相等的话...那么就少了2个+操作...所以最后答案就是n1+n2-少掉的最多操作数, 由状压dp ...
- 分裂 BZOJ2064 状压DP
分析: 这个题很好啊,比起什么裸的状压DP高多了! 我们可以考虑,什么时候答案最大:全合并,之后再分裂 这样,我们必定可以得到答案,也就是说答案必定小于n+m 那么我们可以考虑,什么时候能够使答案更小 ...
- 2018.10.24 bzoj2064: 分裂(状压dp)
传送门 状压dp好题. 考虑对于两个给出的集合. 如果没有两个元素和相等的子集,那么只能全部拼起来之后再拆开,一共需要n1+n2−2n1+n2-2n1+n2−2. 如果有呢? 那么对于没有的就是子问题 ...
- BZOJ_2064_分裂_状压DP
BZOJ_2064_分裂_状压DP Description 背景: 和久必分,分久必和... 题目描述: 中国历史上上分分和和次数非常多..通读中国历史的WJMZBMR表示毫无压力. 同时经常搞OI的 ...
- 状压dp学习笔记(紫例题集)
P3451旅游景点 Tourist Attractions 这个代码其实不算是正规题解的(因为我蒟蒻)是在我们的hzoj上内存限制324MIB情况下过掉的,而且经过研究感觉不太能用滚动数组,所以那这个 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- nefu1109 游戏争霸赛(状压dp)
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...
- poj3311 TSP经典状压dp(Traveling Saleman Problem)
题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...
随机推荐
- 倍福TwinCAT(贝福Beckhoff)常见问题(FAQ)-人机界面如何设置页面跳转
TC3中,可以点击某个按钮,改变所显示的视图,然后从你写好的页面中选择一个要跳过去的页面 当然,在跳过去的页面上再做一个按钮可以跳回主页面也是必须的 更多教学视频和资料下载,欢迎关注以下信 ...
- java学习路线-Java技术人员之路从0基础到高级
满满的 全是干货 java基础: 尚学堂 马士兵 个人推荐 历经5年锤练--史上最适合刚開始学习的人入门的Java基础视频 很具体 适合 时间多的看 传智播客java基础班 马士兵线程 ...
- LINPACK測试
1简单介绍 LINPACK是线性系统软件包(Linear system package) 的缩写. Linpack如今在国际上已经成为最流行的用于測试高性能计算机系统浮点性能的benchmark.通过 ...
- Linux-信号详解
1.Linux支持的所有信号: $ kill -l ) SIGHUP ) SIGINT ) SIGQUIT ) SIGILL ) SIGTRAP ) SIGABRT ) SIGBUS ) SIGFPE ...
- hystrix-turbine实现多服务监控
原文地址:http://www.cnblogs.com/skyblog/p/5633757.html 1. 概述 Demo地址:http://git.oschina.net/zhou666/spr ...
- AngularJs学习笔记(1)——ng-app
众所周知: ng-app 指令用于告诉 AngularJS 应用当前这个元素是根元素.所有 AngularJS 应用都必须要要一个根元素. 只有被具有ng-app属性的DOM元素包含的元素才会受ang ...
- RAD Studio XE5破解补丁及方法
通过测试可用,RAD Studio XE5破解补丁及方法 第一步,将下载下来的“delphicbuilder_xe5_win.iso”解压到任意盘,任意目录. 第二步,将“免序列号安装授权文件”文件夹 ...
- C#微信公众号学习 - (一)测试账号申请
主要分为两部分: 1.创建C#的项目,并发布, 2.微信填写发布的地址进行开发者验证. 一. VS环境为VS2017,创建项目时,自带的一些东西发布会导致各种错误,无奈,创建了空项目aspx窗体,如下 ...
- php-fpm用socket连接
总结:在最新nginx.php下实践如下: 第一步:添加php5-fpm.sock文件 cd /var/run sudo vim php5-fpm.sock //啥也不写入,只要这个文件就可以了~ ...
- Redis_发布订阅(基础)
目录 前言 生产者和消费者 发布和订阅 Java实现 注意 前言 随着业务复杂, 业务的项目依赖关系增强, 使用消息队列帮助系统降低耦合度.发布订阅(pub/sub)是一种消息通信模式,主要目的是解除 ...