Introduction to Mathematical Thinking - Week 4
否定的逻辑
应该思考符号背后表示的逻辑,而不是像操作算术运算符一样操作逻辑符号。
比如
对于任意的 x,x属于自然数,那么 x 是偶数或者奇数;这是对的
如果使用“乘法分配律”拆分,变成“对于任意的x,x属于自然数,那么x是奇数或者对于任意的x,x属于自然数,那么x是奇数” 这是错的
疑惑
但是做练习的时候,还是把其当做符号来运算。For all 变成 at least one;At least one 变成 for all;v 变成 ^;
计算机也是把逻辑规则抽象成符号来运算的。
注意言论的范围
如果你要讨论的是动物,那么应该以动物为主体,而不是以动物的子集为主体。
比如,应该是“对于任意的动物,如果它是老虎,那么它是猫科动物”,而不是“对于任意的老虎,它是猫科动物”。
习题
1.
Which of the following is equivalent to ¬∀x[P(x)⇒(Q(x)∨R(x))]? (Only one is.) [5 points]
∃x[P(x)∨¬Q(x)∨¬R(x)]
∃x[¬P(x)∧Q(x)∧R(x)]
∃x[P(x)∧¬Q(x)∧¬R(x)]
∃x[P(x)∧(¬Q(x)∨¬R(x))]
∃x[P(x)∨(¬Q(x)∧¬R(x))]
解:¬的范围是 ∀x 还是 ∀x[P(x)⇒(Q(x)∨R(x))]?
如果不考虑¬,答案是 ∃x[P(x)∧¬Q(x)∧¬R(x)]。然后答案是这个。这让我疑惑¬是不是印刷错误。
打分题
总评给了0分,正确性给了3分,其他满分。理由是division's not an operation in the integers
改写后的结果:
that means that 1 is divisible by P. But, that's a contradiction, P is a prime number. So, it's at least equal to 2. So, it can't divide into 1.
Introduction to Mathematical Thinking - Week 4的更多相关文章
- Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers
Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...
- Introduction to Mathematical Thinking - Week 9 评论答案2
根据 rubic 打分. 1. 我认为,如果说明 m, n 是自然数,所以最小值是 1 会更清楚.所以 Clarity 我给了 3 分.其他都是 4 分,所以一共是 23 分. 2. 我给出的分数 ...
- Introduction to Mathematical Thinking - Week 9
错题 评分出错 题目要求的是 "any" ,而答案只给出了一个.所以认为回答者没有理解题意,连 any 都没有理解.所以 0 分. 第一,标准的归纳法只能对自然数使用,而题目要求的 ...
- Introduction to Mathematical Thinking - Week 7
Q: Why did nineteenth century mathematicians devote time to the proof of self-evident results? Selec ...
- Introduction to Mathematical Thinking - Week 3
there exists and all there exists 证明根号2是无理数 all 习题 3. Which of the following formal propositions say ...
- Introduction to Mathematical Thinking - Week 2
基本数学概念 real number(实数):是有理数和无理数的总称 有理数:可以表达为两个整数比的数(a/b, b!=0) 无理数是指除有理数以外的实数 imply -- 推导出 不需要 A 能推导 ...
- Deep Learning and Shallow Learning
Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...
- Technical Development Guide---for Google
Technical Development Guide This guide provides tips and resources to help you develop your technica ...
- (转)Awesome Courses
Awesome Courses Introduction There is a lot of hidden treasure lying within university pages scatte ...
随机推荐
- 移动端H5页面 input 获取焦点时,虚拟键盘挡住input输入框解决方法
在移动端h5开发的时候,发现如果input在页面底部,当触发input焦点的时候会弹出系统虚拟键盘,虚拟键盘会遮挡input输入框.这会很影响用户体验,于是在网上找到了如下的解决办法: 方法一:使用w ...
- vue-cli webpack 中全局引入 jquery
1.安装 jquery npm install jquery --save-dev 2.修改 webpack.base.conf.js 方法一 首先加入: const webpack = requir ...
- MySQL存储过程详解 mysql 存储过程(转)
mysql存储过程详解 1. 存储过程简介 我们常用的操作数据库语言SQL语句在执行的时候需要要先编译,然后执行,而存储过程(Stored Procedure)是一组为了完成特定功能的S ...
- (一)Linux——Linux基本概念
Linux是一种自由和开放源码的类UNIX操作系统,使用Linux内核.目前存在着许多不同的Linux发行版,可安装在各种各样的电脑硬件设备,从手机.平板电脑.路由器和影音游戏控制台,到桌上型电脑,大 ...
- 【转载】HTTP和SOAP完全就是两个不同的协议
http:是一个客户端和服务器端请求和应答的标准(TCP). http协议其目的是为了提供一种发布和接收htttp页面的方法 http协议的客户端与服务器的交互:由HTTP客户端发起一个请求,建立一个 ...
- python操作xml文件
一.什么是xml? xml即可扩展标记语言,它可以用来标记数据.定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言. abc.xml <?xml version="1.0&q ...
- android 静态和动态设置 Receiver的 android:enabled值
0x 01 前提约束: 0x001 静态检查:指用action限定Intent,并使用包管理器的queryBroadCastReceivers方法,在flags字段置为0时查找ResolveInfo, ...
- springboot学习(六) springboot开发web应用
1.简介 Spring Boot非常适合开发web应用程序.你可以使用内嵌的Tomcat,Jetty或Undertow轻轻松松地创建一个HTTP服务器.大多数的web应用都使用spring-boot- ...
- CentOS 6.5 X64 U盘启动盘制作
本教程是在Linux系统下制件,可以使用虚拟机安装Linux 1.准备一个8G的U盘,在Linux下分成Fat32---500M----root, 剩下的分成Ext3 ----data,并格式化. 2 ...
- UVA 11885 - Number of Battlefields(斐波那契)
11885 - Number of Battlefields 题意:给周长.求能围成的战场数目.不包含矩形. 思路:详细的递推没递推出来,可是看了网上一个规律,假设包含矩形的答案应该是斐波那契数列(可 ...