题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3160

似乎理解加深了。

用卷积算相同的位置;先把 a 赋成1、 b 赋成0,卷积一遍;再把 a 赋成0、 b 赋成1,卷积一遍;两个加起来就有了每个位置的值,它表示以该位置/2(/2的位置可以是裂缝)为对称轴的回文位置个数。

然后用马拉车把连续区间的情况去掉。

注意一下单个元素也要算上,因为有那种奇数的;马拉车里别忘了把单个元素减去。

因为FFT的两个数组是一样的,所以FFT一次,然后自己乘自己就行了。

虽然调了很久但其实也没什么要注意的。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
#define db double
using namespace std;
const int N=1e5+,M=N<<,mod=1e9+;
const db pi=acos(-);
int n,r[M],len,ans,bin[N];
char ch[N],tc[N<<];
struct cpl{db x,y;}a[M],b[M],I;
cpl operator+ (cpl a,cpl b){return (cpl){a.x+b.x,a.y+b.y};}
cpl operator- (cpl a,cpl b){return (cpl){a.x-b.x,a.y-b.y};}
cpl operator* (cpl a,cpl b){return (cpl){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
void upd(int &x){x>=mod?x-=mod:;x<?x+=mod:;}
void fft(cpl *a,bool fx)
{
for(int i=;i<len;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int R=;R<=len;R<<=)//<<=1
{
int m=R>>;
cpl Wn=(cpl){ cos(pi/m),fx?-sin(pi/m):sin(pi/m) };
for(int i=;i<len;i+=R)
{
cpl w=I;
for(int j=;j<m;j++,w=w*Wn)//w=w*Wn
{
cpl tmp=w*a[i+m+j];
a[i+m+j]=a[i+j]-tmp;
a[i+j]=a[i+j]+tmp;
}
}
}
}
void manachar()
{
int m=(n<<)-;
for(int i=,j=;j<n;i+=,j++)
tc[i]=ch[j],tc[i+]=',';
int id=;
r[]=;ans--;
for(int i=;i<m;i++)
{
r[i]=;
if(id+r[id]>i)
{
r[i]=min(id+r[id]-i,r[(id<<)-i]);
}
if(id+r[id]<=i+r[i])
{
for(;i+r[i]<m&&i-r[i]>=&&tc[i+r[i]]==tc[i-r[i]];r[i]++);
r[i]--; id=i;
}
int tmp=(r[i]+(tc[i]==','))>>;//don't change r[i]!!!!!!
ans-=tmp+(tc[i]!=','); upd(ans);
}
}
int main()
{
I.x=;
scanf("%s",ch);n=strlen(ch);
bin[]=;
for(int i=,m=n+>>;i<=m;i++)bin[i]=bin[i-]<<,upd(bin[i]);
len=;
for(;len<=n<<;len<<=);
for(int i=;i<len;i++) r[i]=(r[i>>]>>)+((i&)?len>>:);
for(int i=;i<n;i++)
if(ch[i]=='a')a[i].x=;
fft(a,);
for(int i=;i<len;i++)a[i]=a[i]*a[i];
fft(a,);
for(int i=;i<n;i++)
if(ch[i]=='b')b[i].x=;
fft(b,);
for(int i=;i<len;i++)b[i]=b[i]*b[i];
fft(b,);
for(int i=;i<len;i++)//len
{
a[i].x=(int(a[i].x/len+0.5)+)>>;
b[i].x=(int(b[i].x/len+0.5)+)>>;
a[i].x+=b[i].x;
ans+=bin[(int)a[i].x]-; upd(ans);
}
manachar();
printf("%d\n",ans);
return ;
}

bzoj 3160 万径人踪灭——FFT的更多相关文章

  1. BZOJ 3160: 万径人踪灭 FFT+快速幂+manacher

    BZOJ 3160: 万径人踪灭 题目传送门 [题目大意] 给定一个长度为n的01串,求有多少个回文子序列? 回文子序列是指从原串中找出任意个,使得构成一个回文串,并且位置也是沿某一对称轴对称. 假如 ...

  2. BZOJ 3160: 万径人踪灭 [fft manacher]

    3160: 万径人踪灭 题意:求一个序列有多少不连续的回文子序列 一开始zz了直接用\(2^{r_i}-1\) 总-回文子串 后者用manacher处理 前者,考虑回文有两种对称形式(以元素/缝隙作为 ...

  3. bzoj 3160 万径人踪灭 FFT

    万径人踪灭 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1936  Solved: 1076[Submit][Status][Discuss] De ...

  4. bzoj 3160 万径人踪灭 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3160 求出关于一个位置有多少对对称字母,如果 i 位置有 f[i] 对,对答案的贡献是 2^ ...

  5. bzoj 3160: 万径人踪灭 manachar + FFT

    3160: 万径人踪灭 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 133  Solved: 80[Submit][Status][Discuss] ...

  6. 【BZOJ】3160: 万径人踪灭 FFT+回文串

    [题意]给定只含'a'和'b'字符串S,求不全连续的回文子序列数.n<=10^5. [算法]FFT+回文串 [题解]不全连续的回文子序列数=回文子序列总数-回文子串数. 回文子串数可以用回文串算 ...

  7. bzoj 3160: 万径人踪灭【FFT+manacher】

    考虑正难则反,我们计算所有对称子序列个数,再减去连续的 这里减去连续的很简单,manacher即可 然后考虑总的,注意到关于一个中心对称的两点下标和相同(这样也能包含以空位为对称中心的方案),所以设f ...

  8. BZOJ 3160: 万径人踪灭

    Description 一个ab串,问有多少回文子序列,字母和位置都对称,并且不连续. Sol FFT+Manacher. 不连续只需要减去连续的就可以了,连续的可以直接Manacher算出来. 其他 ...

  9. BZOJ 3160 万径人踪灭 解题报告

    这个题感觉很神呀.将 FFT 和 Manacher 有机结合在了一起. 首先我们不管那个 “不能连续” 的条件,那么我们就可以求出有多少对字母关于某一条直线对称,然后记 $T_i$ 为关于直线 $i$ ...

随机推荐

  1. HDU 3449 Consumer

    这是一道依赖背包问题.背包问题通常的解法都是由0/1背包拓展过来的,这道也不例外.我最初想到的做法是,由于有依赖关系,先对附件做个DP,得到1-w的附件背包结果f[i]表示i花费得到的最大收益,然后把 ...

  2. MySQL数据库基本操作(四)

    在进行查询之前,我们要先建好关系表,并往数据表中插入些数据.为查询操作做好准备. 五张关系表的创建: #创建并进入数据库: mysql> CREATE DATABASE `info`; Quer ...

  3. 高通LCD驱动调试

    本文转载自:http://www.itgo.me/a/x6305658852004979994/lcd%20qcom 来自 :http://blog.csdn.net/dacaozuo/article ...

  4. Linux bridge

    CentOS bridge 配置: 1.创建br0配置文件  touch /etc/sysconfig/network-scripts/ifcfg-br0 2.修改bro配置文件 vi /etc/sy ...

  5. nohup后台运行jar与关闭

    nohup 用途:LINUX命令用法,不挂断地运行命令.  语法:nohup Command [ Arg ... ] [ & ]  描述:nohup 命令运行由 Command 参数和任何相关 ...

  6. waitpid使用的一点问题

    使用waipid的时候遇到了一个奇怪的问题,将情况简化后描述一下. 有关waitpid的基本介绍参见这里一下:http://www.cnblogs.com/mickole/p/3187770.html ...

  7. POJ2741 Colored Cubes

    Description There are several colored cubes. All of them are of the same size but they may be colore ...

  8. jmeter ant 运行 提示Error occurred during initialization of VM

    运行ant提示错误 网上找到的方法 将set HEAP= -Xms512m -Xmx1024m 改成set HEAP= -Xms512m -Xmx512m 保存后运行成功

  9. aodh M版本新特性 - queue between alarm evaluator and alarm notifier

    之前alarm evaluator service and alarm notifier services之间的通信采用RPC的方式,消耗较大,增加work queue的方式可以获得更好的性能, + ...

  10. nova shelve

    当一个虚机不需要使用的时候,可以将其 shelve 起来.该操作会创建该虚机的一个快照并传到 Glance 中,然后在 Hypervisor 上将该虚机删除,从而释放其资源. 其主要过程为: dest ...