dijkstra算法学习

一、最短路径

单源最短路径:计算源点到其他各顶点的最短路径的长度

全局最短路径:图中任意两点的最短路径

Dijkstra、Bellman-Ford、SPFA求单源最短路径

Floyed可以求全局最短路径,但是效率比较低

SPFA算法是Bellman-Ford算法的队列优化

Dijkstra算法不能求带负权边的最短路径,而SPFA算法、Bellman-Ford算法、Floyd-Warshall可以求带负权边的最短路径。

Bellman-Ford算法的核心代码只有4行,Floyd-Warshall算法的核心代码只有5行。

深度优先遍历可以求一个点到另一个点的最短路径的长度

二、dijkstra算法图解

三、算法步骤

1.初始化,选择好初始点,设总共有vexnum个节点,则总共要将vexnum-1个节点放入s中

for(i = ;i<G.vexnum;i++)

2.遍历U,找出其中最短路径的点,并作记录(放入S中)

    // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = ; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = ; j < G.vexnum; j++)
{
if (flag[j]== && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = ;

3.更新剩余U中节点的距离:设步骤2中加入的节点为k,最短距离为min,则if(k的邻居到k的距离+min)<dist(D,k的邻居),则更新dist(D,k的邻居)

        // 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = ; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}

四、完整代码

/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。 // 初始化
for (i = ; i < G.vexnum; i++)
{
flag[i] = ; // 顶点i的最短路径还没获取到。
prev[i] = ; // 顶点i的前驱顶点为0。
dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
} // 对"顶点vs"自身进行初始化
flag[vs] = ;
dist[vs] = ; // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = ; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = ; j < G.vexnum; j++)
{
if (flag[j]== && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = ; // 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = ; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
} // 打印dijkstra最短路径的结果
printf("dijkstra(%c): \n", G.vexs[vs]);
for (i = ; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

参考资料:http://www.cnblogs.com/skywang12345/p/3711512.html

dijkstra算法学习的更多相关文章

  1. 单源最短路径——Dijkstra算法学习

    每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好 ...

  2. 最短路问题---Dijkstra算法学习

    Dijkstra又称单源最短路算法,就从一个节点到其他各点的最短路,解决的是有向图的最短路问题 此算法的特点是:从起始点为中心点向外层层扩展,直到扩展到中终点为止. 该算法的条件是所给图的所有边的权值 ...

  3. dijkstra算法学习笔记

    dijkstra是一种单源最短路径算法,即求一个点到其他点的最短路.不能处理负边权. 最近某种广为人知的算法频繁被卡,让dijkstra逐渐成为了主流,甚至在初赛中鞭尸了SPFA(? dijkstra ...

  4. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  5. 算法学习记录-图——最短路径之Dijkstra算法

    在网图中,最短路径的概论: 两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点是源点,最后一个顶点是终点. 维基百科上面的解释: 这个算法是通过为每个顶点 v 保留目前为止所找到的从 ...

  6. SPFA算法学习笔记

    一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...

  7. Java用Dijkstra算法实现地图两点的最短路径查询(Android版)

    地图上实现最短路径的查询,据我了解的,一般用Dijkstra算法和A*算法来实现.由于这是一个课程项目,时间比较急,而且自己不熟悉A*算法,所以参考网上的Dijkstra算法(http://blog. ...

  8. HDU 1874 畅通工程续(初涉dijkstra算法实现)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 dijkstra算法实现可参照此博客学习:http://www.cnblogs.com/biye ...

  9. Dijkstra算法——单源最短路径问题

    学习一个点到其余各个顶点的最短路径--单源最短路径 Dijkstra算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向 ...

随机推荐

  1. 深入理解JVM读书笔记思维导图

    为了证明我已经啃完这本书然后买新书不用剁手...脑图画了8个钟,感觉整个人都不好了T_T 脑细胞不知道死了多少... 其实没吃透,估计若干年后要重新翻开来看...

  2. 【Spring开发】—— AOP之方法级拦截

    前言: 前面介绍了Spring的核心模块以及相关的依赖注入等概念.这篇讲解一下spring的另一个重点,AOP面向切面编程. 说道AOP不得不提到几个概念: 切面:也就是我们自己的一些业务方法. 通知 ...

  3. 笨办法学Python(三十九)

    习题 39: 列表的操作 你已经学过了列表.在你学习“while 循环”的时候,你对列表进行过“追加(append)”操作,而且将列表的内容打印了出来.另外你应该还在加分习题里研究过 Python 文 ...

  4. oracle 比较两个用户表结构的区别。

    create table ESPACE_TABLE ( TABLE_NAME ) not null ) create table ESPACE_COLUMN ( TABLE_NAME ) not nu ...

  5. 在已有软件加壳保护 下实现 Inline hook

    如写的不好请见谅,本人水平有限. 个人简历及水平:. http://www.cnblogs.com/hackdragon/p/3662599.html 正常情况: 接到一个项目实现对屏幕输出内容的获取 ...

  6. HDU 1754 I Hate It 【线段树单点修改 维护区间最大值】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1754 I Hate It Time Limit: 9000/3000 MS (Java/Others ...

  7. Golang Failpoint 的设计与实现

    小结: 1. https://mp.weixin.qq.com/s/veIoupLjM4l5SUVC6h_Gkw Golang Failpoint 的设计与实现 原创: 龙恒 PingCAP 今天  

  8. mysql 综合

    一.库操作 二.表操作 1.存储引擎介绍 show engines; 查看数据库支持的引擎 MySQL 使用 InnoDB 指定表类型/存储引擎 create table t1(id int)engi ...

  9. Python—XML

    什么是xml XML 指可扩展标记语言(EXtensible Markup Language) XML 是一种标记语言,很类似 HTML XML 的设计宗旨是传输数据,而非显示数据 XML 标签没有被 ...

  10. o'Reill的SVG精髓(第二版)学习笔记——第五章

    第五章 文档结构 5.1 结构与表现 XML的目标之一便是提供一种能将结构从视觉表示中独立出来的方法. 但是不幸的是,关于XML的很多讨论都强调结构而非表现. 我们将通过详细讨论如何在SVG中指定表现 ...