dijkstra算法学习

一、最短路径

单源最短路径:计算源点到其他各顶点的最短路径的长度

全局最短路径:图中任意两点的最短路径

Dijkstra、Bellman-Ford、SPFA求单源最短路径

Floyed可以求全局最短路径,但是效率比较低

SPFA算法是Bellman-Ford算法的队列优化

Dijkstra算法不能求带负权边的最短路径,而SPFA算法、Bellman-Ford算法、Floyd-Warshall可以求带负权边的最短路径。

Bellman-Ford算法的核心代码只有4行,Floyd-Warshall算法的核心代码只有5行。

深度优先遍历可以求一个点到另一个点的最短路径的长度

二、dijkstra算法图解

三、算法步骤

1.初始化,选择好初始点,设总共有vexnum个节点,则总共要将vexnum-1个节点放入s中

for(i = ;i<G.vexnum;i++)

2.遍历U,找出其中最短路径的点,并作记录(放入S中)

    // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = ; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = ; j < G.vexnum; j++)
{
if (flag[j]== && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = ;

3.更新剩余U中节点的距离:设步骤2中加入的节点为k,最短距离为min,则if(k的邻居到k的距离+min)<dist(D,k的邻居),则更新dist(D,k的邻居)

        // 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = ; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
}

四、完整代码

/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。 // 初始化
for (i = ; i < G.vexnum; i++)
{
flag[i] = ; // 顶点i的最短路径还没获取到。
prev[i] = ; // 顶点i的前驱顶点为0。
dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
} // 对"顶点vs"自身进行初始化
flag[vs] = ;
dist[vs] = ; // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = ; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = ; j < G.vexnum; j++)
{
if (flag[j]== && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = ; // 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = ; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
} // 打印dijkstra最短路径的结果
printf("dijkstra(%c): \n", G.vexs[vs]);
for (i = ; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

参考资料:http://www.cnblogs.com/skywang12345/p/3711512.html

dijkstra算法学习的更多相关文章

  1. 单源最短路径——Dijkstra算法学习

    每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好 ...

  2. 最短路问题---Dijkstra算法学习

    Dijkstra又称单源最短路算法,就从一个节点到其他各点的最短路,解决的是有向图的最短路问题 此算法的特点是:从起始点为中心点向外层层扩展,直到扩展到中终点为止. 该算法的条件是所给图的所有边的权值 ...

  3. dijkstra算法学习笔记

    dijkstra是一种单源最短路径算法,即求一个点到其他点的最短路.不能处理负边权. 最近某种广为人知的算法频繁被卡,让dijkstra逐渐成为了主流,甚至在初赛中鞭尸了SPFA(? dijkstra ...

  4. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  5. 算法学习记录-图——最短路径之Dijkstra算法

    在网图中,最短路径的概论: 两顶点之间经过的边上权值之和最少的路径,并且我们称路径上的第一个顶点是源点,最后一个顶点是终点. 维基百科上面的解释: 这个算法是通过为每个顶点 v 保留目前为止所找到的从 ...

  6. SPFA算法学习笔记

    一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...

  7. Java用Dijkstra算法实现地图两点的最短路径查询(Android版)

    地图上实现最短路径的查询,据我了解的,一般用Dijkstra算法和A*算法来实现.由于这是一个课程项目,时间比较急,而且自己不熟悉A*算法,所以参考网上的Dijkstra算法(http://blog. ...

  8. HDU 1874 畅通工程续(初涉dijkstra算法实现)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 dijkstra算法实现可参照此博客学习:http://www.cnblogs.com/biye ...

  9. Dijkstra算法——单源最短路径问题

    学习一个点到其余各个顶点的最短路径--单源最短路径 Dijkstra算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向 ...

随机推荐

  1. IOS 社交分享

    #import <Social/Social.h> @interface HMViewController () @end @implementation HMViewController ...

  2. 【web前端】第一个移动端的心里体会

    公司(zyqygl)没有UI,刚开始,并没有一些具体的标准,对于字体多大,头部底部多高等一些参数,完全没有概念,按照前辈的指导(只有一个标准:做出的东西跟设计图一毛一样就对了),粗略的搭了个框架. 大 ...

  3. java基础知识一览(二)

    一.java基础知识 1.一个文件中只能有一个public的类,因为他的类名要求和文件名相同. 2.classpath变量可以设置其它目录下的类. 例如:类文件所在目录是:F:\Javajdk,那么没 ...

  4. 使用百度新闻RSS

    function getbaidu() { $result=""; //RSS源地址列表数组 $rssfeed = array("http://news.baidu.co ...

  5. PC Android IOS资料同步更新

    在程序发布后,特别是IOS版本,想替换里边的内容,重新发布版本很是麻烦.我们就可以动态用AssetBundle更新内容. 如果是自定义二进制文件,先要改为“.Bytes”后缀的文件,Unity会把这个 ...

  6. ipython notebook开通远程

    之前只是会用,别人告诉我命令和大概怎么设置的,今天自己搭建才发现一知半解搞不定啊. 目的:远程通过ipython notebook调用服务器. 服务器是ubuntu16.04 本地机器win7 配置方 ...

  7. Python 学习笔记(七)Python字符串(二)

    索引和切片 索引  是从0开始计数:当索引值为负数时,表示从最后一个元素(从右到左)开始计数 切片 用于截取某个范围内的元素,通过:来指定起始区间(左闭右开区间,包含左侧索引值对应的元素,但不包含右测 ...

  8. Vue--- 使用vuex使用流程 1.0

    Vuex 1.安装vuex npm install  -save vuex 2. 引入 创建store文件夹目录 创建 vuex     指挥公共目录    store['state','action ...

  9. #leetcode刷题之路3-无重复字符的最长子串

    给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度. 示例 1:输入: "abcabcbb"输出: 3 解释: 因为无重复字符的最长子串是 "abc" ...

  10. [国家集训队]小Z的袜子(莫队,概率)

    题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编 ...