C. Strong Password

给定一个字符串\(s\),一个密码的长度\(m\),下界字符串\(l\)和上界字符串\(r\),上下界字符串长度均为\(m\),且字符只在0~9范围内,上界字符串的第 \(i\) 位非严格大于下界字符串的第 \(i\) 位,密码的第 \(i\) 位需要位于 \([l_i, r_i]\) 内。问是否存在一个密码不是\(s\)的子序列?

\(1 \leq m \leq 10\)

\(1 \leq |s| \leq 3\times 10^5\)

题解:贪心 + 枚举

  • 因为\(m\)的范围比较小,所以我们不妨考虑枚举密码的每一位
  • 根据题意得知,第\(i\)位密码\(ch\)必须保证在\([l_i,r_i]\)范围内
  • 因为题目给出的是子序列,所以我们一旦选定了第\(i\)位密码为\(ch\),假设\(ch\)在\(s\)中存在且第一次出现的位置为\(pos\),那么第\(i+1\)位密码应该从\(s\)的第\(pos\)位之后开始搜索
  • 我们不妨设\(s\)的第\(pos\)位之后的部分字符串为\(t\)
  • 如果我们枚举到的密码在\(t\)中不存在,那么说明密码一定能被构造出来
  • 如果第\(i\)位密码的所有情况在\(t\)中都存在的话,我们贪心地选择\([l_i,r_i]\)中第一次出现且在\(s\)中下标最大的字符作为第\(i\)位密码
#include <bits/stdc++.h>
#define Zeoy std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0)
#define all(x) (x).begin(), (x).end()
#define rson id << 1 | 1
#define lson id << 1
#define int long long
#define mpk make_pair
#define endl '\n'
using namespace std;
typedef unsigned long long ULL;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-9;
const int N = 2e5 + 10, M = 4e5 + 10; void solve()
{
string s;
cin >> s;
int m;
cin >> m;
string l, r;
cin >> l >> r;
bool flag = false;
int p = 0;
for (int i = 0; i < m; ++i)
{
int mx = 0;
for (char j = l[i]; j <= r[i]; ++j)
{
int t = s.find(j, p);
if (t == -1)
{
flag = true;
break;
}
mx = max(mx, t);
}
p = mx + 1;
if (flag)
{
cout << "YES" << endl;
return;
}
}
cout << "NO" << endl;
}
signed main(void)
{
Zeoy;
int T = 1;
cin >> T;
while (T--)
{
solve();
}
return 0;
}

D. Rating System

给定对局数\(n\),以及每个对局会使得\(rating\)的变化值\(a_i\),初始\(rating\)为\(0\)。问给定的低保线\(k\)(分数到\(k\)后无论\(rating\)怎么变不会低于\(k\))为多少时,\(n\)个对局后玩家的\(rating\)最高

题解:思维 + 最大后缀

  • 容易发现答案应该是前缀和\(pre_i\)中的一个,但是如果我们枚举所有的前缀和复杂度显然为\(O(n^2)\),所以我们不妨逆向思维来考虑这个问题
  • 设\(suf\_max_i\)为第\(i\)位之后的最大后缀,易得\(suf\_max[i] = max(suf[i+1],pre[n]-pre[i])\)
  • 我们手模发现,对于任意一个\(k = pre_i\),最终的\(rating\)为\(pre_i + suf\_max_i\)
  • 这样的话,时间复杂度为\(O(n)\)
#include <bits/stdc++.h>
#define Zeoy std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0)
#define all(x) (x).begin(), (x).end()
#define rson id << 1 | 1
#define lson id << 1
#define int long long
#define mpk make_pair
#define endl '\n'
using namespace std;
typedef unsigned long long ULL;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-9;
const int N = 3e5 + 10, M = 4e5 + 10; int n;
int a[N];
int pre[N]; void solve()
{
cin >> n;
for (int i = 1; i <= n; ++i)
cin >> a[i];
for (int i = 1; i <= n; ++i)
pre[i] = pre[i - 1] + a[i];
vector<int> suf_max(n + 10);
for (int i = n; i >= 0; i--)
suf_max[i] = max(suf_max[i + 1], pre[n] - pre[i]);
int k = 0;
for (int i = 1; i <= n; ++i)
{
if (pre[k] + suf_max[k] < pre[i] + suf_max[i])
k = i;
}
cout << max(0LL, pre[k]) << endl;
}
signed main(void)
{
Zeoy;
int T = 1;
cin >> T;
while (T--)
{
solve();
}
return 0;
}

Educational Codeforces Round 151 (Rated for Div的更多相关文章

  1. Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...

  2. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  3. Educational Codeforces Round 43 (Rated for Div. 2)

    Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...

  4. Educational Codeforces Round 35 (Rated for Div. 2)

    Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...

  5. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  6. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...

  7. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  8. Educational Codeforces Round 39 (Rated for Div. 2) G

    Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...

  9. Educational Codeforces Round 48 (Rated for Div. 2) CD题解

    Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...

  10. Educational Codeforces Round 60 (Rated for Div. 2) 题解

    Educational Codeforces Round 60 (Rated for Div. 2) 题目链接:https://codeforces.com/contest/1117 A. Best ...

随机推荐

  1. BOM – 操作 Query

    前言 ASP.NET Core 写过一篇关于操作 query 的 ASP.NET Core – 操作 Uri 和 Query. 前端偶尔也会需要做出 query. URLSearchParams 之前 ...

  2. 26.删除有序数组中的重复项 Golang实现

    题目描述: 给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度.元素的 相对顺序 应该保持 一致 .然后返回 nums 中唯 ...

  3. 新题速看!2021阿里、腾讯、字节都在问的SQL数据库笔试题及答案都给你整理好啦!

    ​    前  言 2021到了最后一个月份,年后肯定有蛮多小伙伴需要跳槽换工作,但对于年限稍短的软件测试工程师,难免会需要进行笔试,而在笔试中,基本都会碰到一道关于数据库的大题,今天这篇文章呢,就收 ...

  4. Avalonia upgrade from 0.10 to 11.x

    Avalonia 从0.10版本升级到11.x版本.由于11.x新版本与旧版本对比发生了破坏性的变化,因此官方给出了升级的攻略可以参考. https://docs.avaloniaui.net/doc ...

  5. 第27天:安全开发-PHP应用&TP框架&路由访问&对象操作&内置过滤绕过&核心漏洞 - Shortcut

    https://www.kancloud.cn/manual/thinkphp5_1/354000 ThinkPHP-Vuln-master

  6. kali系统安装和CVE-2017-12615测试

    1 安装kali系统 1.1 下载VMware压缩包 kali-linux-2022.1 默认的用户和密码是kali 1.2 初始化系统 sudo apt update -y #kali sudo a ...

  7. 【赵渝强老师】Docker Swarm实现服务的滚动更新

    一.什么是Docker Swarm? Docker Swarm是Docker官方提供的一款集群管理工具,其主要作用是把若干台Docker主机抽象为一个整体,并且通过一个入口统一管理这些Docker主机 ...

  8. LeetCode 564. Find the Closest Palindrome (构造)

    题意: 给一个数字n 求离n最近(且不等)的回文串 存在多个答案返回最小的 首先很容易想到 将数字分为两段,如 12345 -> 123/45,然后将后半段根据前面的进行镜像重置 123/45 ...

  9. cf1632 Codeforces Round #769 (Div. 2)题解

    A ABC 水题0.0 B Roof Construction 构造题,经过实验构造出了0的右边是不超过\(n\)的最大的\(2^k\rightarrow n\),左边是\(2^k-1,2^k-2,. ...

  10. 06 导师不敢和你说的水论文隐藏技巧,顶刊、顶会、水刊的论文读哪个,如何做一个称职的学术裁缝.md

    博客配套视频链接: https://www.bilibili.com/video/BV11g41127Zn/?spm_id_from=333.788&vd_source=b1ce52b6eb3 ...