版权声明:本文为本文为博主原创文章,转载请注明出处 https://www.cnblogs.com/wsg1100。如有错误,欢迎指正。

本文介绍xenomai watchdog,有什么用?它是如何工作的?

一、前言

介绍xenomai watchdog之前,有必要先介绍操作系统对实时任务的调度,实时任务的调度是指在满足实时任务时间约束的情况下,对任务进行排队和执行的策略。两种常见的实时任务调度算法是RR调度(Round Robin,轮转调度)和FIFO调度(First In First Out,先进先出调度)。

正常情况下,高优先级实时任务对CPU时间绝对的优先权。如果此时最高优先级任务存在bug,出错或进入一个不存在主动和被动让出CPU资源的逻辑时,系统中的鼠标、键盘、屏幕等非实时任务将会因为得不到CPU运行时间饿死,导致系统失去响应。

为此PREEMPT-RT和xenomai给出了不同的解决方案。

PREEMPT-RT(RT Throttling)

对于PREEMPT-RT,PREEMPT-RT提供了一个机制,确保非实时任务能在某个时间点执行,该机制也被称为RT限流(RT Throttling),它由两个值决定:

  • /proc/sys/kernel/sched_rt_period_us 定义了微秒级别的窗口,在这个窗口里调度器会在实时和非实时任务之间共享资源,默认1 s。

  • /proc/sys/kernel/sched_rt_runtime_us 则规定了在上述窗口中为实时任务分配的时长比例。默认值950000us,即95%。意味着实时任务在每 1 秒内最多可以使用 950 毫秒的 CPU 时间,剩余的 50 毫秒留给其他非实时任务。

可以通过以下方式修改这些值:

echo 950000 > /proc/sys/kernel/sched_rt_runtime_us
echo 1000000 > /proc/sys/kernel/sched_rt_period_us

需要注意的是,修改这些值需要超级用户(root)权限。

RT Throttling保证了即使实时任务出现错误或者无限循环,也会为非实时任务预留一定的CPU运行时间,方便我们定位和debug。

xenomai也有实时任务的限制措施xenomai watchdog,但与PREEMPT-RT的RT Throttling不同。

一、xenomai watchdog介绍

xenomai watchdog是xenomai内核提供的一个检测xenomai实时任务是否长期占用CPU机制,内核编译时通过以下配置启用该功能。

[*] Xenomai/cobalt  --->
[*] Debug support --->
[*] Watchdog support
(4) Watchdog timeout

其中Watchdog timeout是看门狗动作的超时时间,时间单位是秒,允许配置的默认最大时间为60秒。内核启用后,看门狗超时时间还可通过内核参数watchdog_timeout在启动时修改,单位:秒,值不受限制。

当xenomai watchdog触发时,watchdog会向当前cpu运行的线程发送SIGDEBUG signal,该信号会使实时任务结束,同时内核会输出信息,实时任务结束后系统恢复响应,通过demsg命令可以看到。

[Xenomai] watchdog triggered on CPU #0 -- runaway thread 'RT_Thread' signaled

那xenomai watchdog是如何工作的?有什么局限?不使用会发生什么?

二、xenomai watchdog工作原理

我们知道Xenomai 是一个双调度核操作系统,它在内核态添加了一个高优先级的实时调度核 Cobalt 来管理实时任务。Cobalt 调度核与 Linux 调度核共存,通过 Ipipeline 机制将两个调度上下文分为实时域和非实时域,Ipipeline 确保了 Cobalt 内核(实时域)的优先级高于 Linux 内核(非实时域,也称root domain),linux内核退化为成为 Cobalt 内核的idle任务,从而保障实时任务的实时性;(有关该部分,请查阅本博客其他文章)。

实时域和非实时域会随着任务的运行情况而来回切换。当没有实时任务需要运行释放CPU资源给linux非实时任务,或者实时任务调用了linux提供的系统资源的实时,会切换到非实时域。

看门狗的触发逻辑是这样的,当进入实时任务调度上下文的时候,看门狗启动开始定时,离开实时上下文(实时任务调用了非实时服务或者主动睡眠让出 cpu) 停止,只要看门狗超时说明实时任务在这段时间内一直在运行,看门狗看管的是整个实时任务集合,不是某个特定任务,看门狗超时触发的时候会把当前 cpu 运行的任务 kill 掉,任何一个实时任务都有可能在watchdog触发这个时间点上

具体代码如下:

static inline void enter_root(struct xnthread *root)
{
struct xnarchtcb *rootcb __maybe_unused = xnthread_archtcb(root); #ifdef CONFIG_XENO_OPT_WATCHDOG
xntimer_stop(&root->sched->wdtimer);
#endif
/*...*/
} static inline void leave_root(struct xnthread *root)
{
struct xnarchtcb *rootcb = xnthread_archtcb(root);
struct task_struct *p = current; /*...*/ #ifdef CONFIG_XENO_OPT_WATCHDOG
xntimer_start(&root->sched->wdtimer, get_watchdog_timeout(),
XN_INFINITE, XN_RELATIVE);
#endif
}

而看门狗处理逻辑也很简单,如果当前处于是root域,不处理;若当前是用户态实时任务,则直接发送信号;若当前运行的内核态实时任务,则将当前任务状态设置为XNKICKED并取消运行。

static void watchdog_handler(struct xntimer *timer)
{
struct xnsched *sched = xnsched_current();
struct xnthread *curr = sched->curr; if (likely(xnthread_test_state(curr, XNROOT))) {/*当前处于root域*/
xnsched_reset_watchdog(sched);
return;
} if (likely(++sched->wdcount < wd_timeout_arg))
return; trace_cobalt_watchdog_signal(curr); if (xnthread_test_state(curr, XNUSER)) { /*用户态实时任务*/
printk(XENO_WARNING "watchdog triggered on CPU #%d -- runaway thread "
"'%s' signaled\n", xnsched_cpu(sched), curr->name);
xnthread_call_mayday(curr, SIGDEBUG_WATCHDOG);
} else { /*内核态实时任务*/
printk(XENO_WARNING "watchdog triggered on CPU #%d -- runaway thread "
"'%s' canceled\n", xnsched_cpu(sched), curr->name);
/*
* On behalf on an IRQ handler, xnthread_cancel()
* would go half way cancelling the preempted
* thread. Therefore we manually raise XNKICKED to
* cause the next call to xnthread_suspend() to return
* early in XNBREAK condition, and XNCANCELD so that
* @thread exits next time it invokes
* xnthread_test_cancel().
*/
xnthread_set_info(curr, XNKICKED|XNCANCELD);
} xnsched_reset_watchdog(sched);
}

三、使用场景

xenomai watchdog会导致出问题的实时任务退出,所以一般在实时软件开发阶段,开启watchdog可以尽早暴露实时应用潜在的出错或无限循环问题,避免软件发布后产生严重后果。

如果实时应用发布后,在特定场景下出现系统无响应问题,可用启用watchdog来排查定位。

下一篇文章,我将给大家介绍一个真实生产环境中遇到的问题,一个外部条件触发低优先级实时任务进入无限循环逻辑后,导致整个系统实时任务调度异常的问题,敬请期待。

【原创】linux实时操作系统xenomai看门狗(watchdog)机制及作用介绍的更多相关文章

  1. 【原创】linux实时操作系统xenomai x86平台基准测试(benchmark)

    一.前言 benchmark 即基准测试.通常操作系统主要服务于应用程序,其运行也是需要一定cpu资源的,一般来说操作系统提供服务一定要快,否则会影响应用程序的运行效率,尤其是实时操作系统.所以本文针 ...

  2. linux内核中断之看门狗

    一:内核中断 linux内核中的看门狗中断跟之前的裸板的中断差不多,在编写驱动之前,需要线把内核自带的watch dog模块裁剪掉,要不然会出现错误:在Device Drivers /Watchdog ...

  3. 【原创】xenomai3.1+linux构建linux实时操作系统-基于X86_64和arm

    版权声明:本文为本文为博主原创文章,转载请注明出处.如有问题,欢迎指正.博客地址:https://www.cnblogs.com/wsg1100/ 目录 一.概要 二.环境准备 1.1 安装内核编译工 ...

  4. Linux 软件看门狗 watchdog 喂狗

    Linux 自带了一个 watchdog 的实现,用于监视系统的运行,包括一个内核 watchdog module 和一个用户空间的 watchdog程序.内核 watchdog 模块通过 /dev/ ...

  5. Linux编程之《看门狗进程》

    Intro 当我们编写服务器代码时,为了让自己的服务器在意外崩溃时能够及时的重启,软件看门狗就显示出它的作用了,该看门狗进程是通过fork一个子进程(业务进程),父进程一旦捕获到了子进程的结束信号就重 ...

  6. Linux 下如何使用看门狗

      Linux内核有集成WD的选项.将其使能后,系统里就会有watchdog的设备驱动:/dev/watchdog.这样,在应用程序里只需打开这个设备使用即可:#include <fcntl.h ...

  7. 【分享】iTOP-iMX6UL开发板驱动看门狗 watchdog 以及 Linux-c 测试例程

    iTOP-iMX6UL开发板看门狗测试例程,iTOP-iMX6UL 开发板的看门狗驱动默认已经配置,可以直接使用测试例程. 版本 V1.1:1.格式修改:2.例程修改完善,其中增加喂狗代码.1 看门狗 ...

  8. 在多任务(RTOS)环境中使用看门狗

    最近在SEGGER的博客上看到一篇有关在实时操作系统使用看门狗的文章.从一个失败的太空项目出发,分析了看门狗的作用及使用,自我感觉很有启发,特此翻译此文并推荐给各位同仁.为了阅读方便,有些航天领域名词 ...

  9. 【原创】linux实时应用如何printf输出不影响实时性?

    版权声明:本文为本文为博主原创文章,转载请注明出处 https://www.cnblogs.com/wsg1100.如有错误,欢迎指正. @ 目录 1. 前言 2. linux终端输出 3. 常见的N ...

  10. 软件看门狗--别让你地程序无响应(使用未公开API函数IsHungAppWindow,知识点较全)

    正文一.概述一些重要的程序,必须让它一直跑着:而且还要时时关心它的状态——不能让它出现死锁现象.当然,如果一个主程序会出现死锁,肯定是设计或者编程上的失误.我们首要做的事是,把这个Bug揪出来.但如果 ...

随机推荐

  1. 【YashanDB知识库】账号被锁,如何分析具体原因

    问题现象 客户刚开始使用YashanDB的时候,经常收到客户反馈账号被锁,但是不知道哪里触发了. 问题的风险及影响 客户环境为测试环境,影响测试业务的开展. 问题影响的版本 YashanDB版本:23 ...

  2. linux 上抓包

    #tcpdump -i mgmt0 -nn -s0 -v port 8001 capture IPv6 ping packets #tcpdump ip6 -i nic0 -nn -s0 and ic ...

  3. 深入理解Argo CD工作原理

    1. ArgoCD 的架构 ArgoCD 是一个 Kubernetes 原生的持续交付工具,它通过监控 Git 仓库中的应用定义来自动部署应用到 Kubernetes 集群.其核心架构由以下几个关键组 ...

  4. 006.MinIO基础使用

    图形界面基础使用 bucket bucket创建 图形界面创建bucket. 特性: Versioning 开启版本控制,开启版本控制则允许在同一键下保持同一对象的多个版本. Object Locki ...

  5. 墨天轮沙龙 | 腾讯云陈昊:TDSQL-C Serverless应用与技术实践

    导读 数据库的发展由对性能的要求,逐步发展为对更为极致成本的要求,Serverless数据库是在高性能云数据库之上的极致成本优化方案.[墨天轮数据库沙龙-Serverless专场]邀请到腾讯云数据库产 ...

  6. 4.flask 源码解析:上下文

    目录 一.flask 源码解析:上下文 1.1 上下文(application context 和 request context) 1.2 Update: 为什么要用 LocalProxy Flas ...

  7. Docker高阶篇(一)

    本篇章主要为工作实践过程中对高端应用的处理和把控 1.Docker复杂安装 mysql的主从复制 https://www.bilibili.com/video/BV1gr4y1U7CY?p=41&am ...

  8. vue3实现多层级的动态表单增减

    .markdown-body { line-height: 1.75; font-weight: 400; font-size: 16px; overflow-x: hidden; color: rg ...

  9. ajax下载二进制文件(导出Excel)

    var url = 'http://127.0.0.1'; var xhr = new XMLHttpRequest(); xhr.open('GET', url, true); // 也可以使用PO ...

  10. dirseach目录扫描工具-安装详细教程

    安装: 1.github源码下载解压 使用 git 安装: 推荐git clone https://github.com/maurosoria/dirsearch.git --depth 1 zip文 ...