1 Scalar Function

\(\text{If }f(\mathbf{x})\in\mathbf{R},\mathrm{then}\)

\[df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial z}dz=\begin{bmatrix}\frac{\partial f}{\partial x}&\frac{\partial f}{\partial y}&\frac{\partial f}{\partial z}\end{bmatrix}\begin{bmatrix}dx\\dy\\dz\end{bmatrix}= f(\mathbf{x})' d\mathbf{x}.
\]

1.1 Derivative

So

\[\dfrac{\partial f}{\partial\mathbf{x}}=\begin{bmatrix}\dfrac{\partial f}{\partial x}&\dfrac{\partial f}{\partial y}&\dfrac{\partial f}{\partial z}\end{bmatrix} = f(\mathbf{x})'
\]

这里用的是 Numerator layout.

1.2 Gradient

\[\left.\nabla f=\left(\frac{\partial f}{\partial\mathbf{x}}\right)^{\mathsf{T}}=\left[\begin{array}{ccc}\frac{\partial f}{\partial x}&\frac{\partial f}{\partial y}&\frac{\partial f}{\partial z}\end{array}\right.\right]^{\mathsf{T}} = \begin{bmatrix}\frac{\partial f}{\partial x}\\\frac{\partial f}{\partial y}\\\frac{\partial f}{\partial z}\end{bmatrix}.
\]

2 Vector Function

\(\text{if }\mathbf{f}(\mathbf{x})=\begin{bmatrix}f(\mathbf{x})\\g(\mathbf{x})\\h(\mathbf{x})\end{bmatrix}\in\mathbf{R}^3,\text{then:}\)

2.1 Jacobian

\[\mathbf{J}(\mathbf{x})=\dfrac{\partial\mathbf{f}}{\partial\mathbf{x}}=\begin{bmatrix}\frac{\partial f}{\partial x}&\frac{\partial f}{\partial y}&\frac{\partial f}{\partial z}\\\frac{\partial g}{\partial x}&\frac{\partial g}{\partial y}&\frac{\partial g}{\partial z}\\\frac{\partial h}{\partial x}&\frac{\partial h}{\partial y}&\frac{\partial h}{\partial z}\end{bmatrix}
\]

2.2 Divergence

\[\nabla\cdot\mathbf{f}=\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}+\frac{\partial h}{\partial z}
\]

2.3 Curl

\[\nabla\times\mathbf{f}=\begin{bmatrix}\frac{\partial h}{\partial y}-\frac{\partial g}{\partial z}\\\frac{\partial f}{\partial z}-\frac{\partial h}{\partial x}\\\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\end{bmatrix}
\]

2.4 Hessian

\[\mathbf{H}=\mathbf{J}(\nabla f(\mathbf{x}))=\begin{bmatrix}\frac{\partial^2f}{\partial x^2}&\frac{\partial^2f}{\partial x\partial y}&\frac{\partial^2f}{\partial x\partial z}\\\frac{\partial^2f}{\partial y\partial x}&\frac{\partial^2f}{\partial y^2}&\frac{\partial^2f}{\partial y\partial z}\\\frac{\partial^2f}{\partial z \partial x}&\frac{\partial^2f}{\partial z \partial y}&\frac{\partial^2f}{\partial z^2}\end{bmatrix}
\]

https://www.value-at-risk.net/functions/

X ref

  1. HKU : Vector calculus for engineers
  2. MIT : s096-matrix-calculus-for-machine-learning
  3. GAMES103 : Physics-Based Animation
  4. Wikipedia : Matrix Calculus

Matrix Calculus的更多相关文章

  1. 学习的矩阵微积分The matrix calculus you need for deep learning

    学习的矩阵微积分The matrix calculus you need for deep learning https://explained.ai/matrix-calculus/index.ht ...

  2. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

    目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

  3. dir命令只显示文件名

    dir /b 就是ls -f的效果 1057 -- FILE MAPPING_web_archive.7z 2007 多校模拟 - Google Search_web_archive.7z 2083 ...

  4. [zt]矩阵求导公式

    今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --&g ...

  5. 矩阵的f范数及其求偏导法则

    转载自: http://blog.csdn.net/txwh0820/article/details/46392293 矩阵的迹求导法则   1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...

  6. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  7. NDT(Normal Distributions Transform)算法原理与公式推导

    正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...

  8. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  9. 导数、多元函数、梯度、链式法则及 BP 神经网络

    一元函数的导数 对于函数\(y=f(x)\),导数可记做\(f'(x_0)\).\(y'|x=x_0\)或\(\frac{dy}{dx}|x=x_0 \).定义如下: \[f'(x_0) = \lim ...

  10. 方阵的迹(trace)及其微分(导数)

    trace 的一个十分重要的性质在于线性性, Tr(A+B)=Tr(A)+Tr(B)Tr(cA)=cTr(A) 1. 基本性质 Tr(A)=Tr(AT) Tr(AB)=Tr(BA) Tr(ABC)=T ...

随机推荐

  1. 零基础学习人工智能—Python—Pytorch学习(三)

    前言 这篇文章主要两个内容. 一,把上一篇关于requires_grad的内容补充一下. 二,介绍一下线性回归. 关闭张量计算 关闭张量计算.这个相对简单,阅读下面代码即可. print(" ...

  2. 9组-Beta冲刺-总结

    一.基本情况 组长博客链接:9组-Beta冲刺-总结 现场答辩总结:本次答辩,我们演示了我们到Beta冲刺周结束时的成果展示,离目标还有一些距离,不过本次答辩完成了任务,总体来说还不错,希望下次最终答 ...

  3. 9组-Alpha冲刺-6/4

    一.基本情况 队名:不行就摆了吧 组长博客:https://www.cnblogs.com/Microsoft-hc/p/15546712.html 小组人数: 8 二.冲刺概况汇报 卢浩玮 过去两天 ...

  4. VMware Workstation虚拟机 + 许可证密钥

    VMware Workstation虚拟机 + 许可证密钥 VMware Workstation是什么? VMware简介 VMware 安装 VMware系统要求 VMware 版本下载地址 许可证 ...

  5. 非常简易的SpringBoot后台项目

    非常简易的SpringBoot后台项目 1. 创建项目 使用IDEA创建 Spring项目,或在 https://start.spring.io/ . https://start.aliyun.com ...

  6. github代理加速

    终端命令行 支持终端命令行 git clone , wget , curl 等工具下载.支持 raw.githubusercontent.com , gist.github.com , gist.gi ...

  7. tracking调研

    常用框架有以下三种:       Separate Detection and Embedding (SDE- 物体检测,特征提取与物体关联),JOINT Detection and Embeddin ...

  8. TimesURL: 用于通用时间序列表征学习的自监督对比学习《TimesURL: Self-supervised Contrastive Learning for Universal Time Series Representation Learning》模型代码运行解析

    现在是2024年3月25日16:17,打算好好的跑一个模型的代码,之前都没有系统性的过一遍,打算拿这个模型的代码开刀,Go,环境和乱七八糟的已经配好了. 关于这篇论文,之前写了博客,里面也有Githu ...

  9. Angular Material 18+ 高级教程 – CDK Portal

    前言 CDK Portal 是 Angular Material 对 Angular Dynamic Component (ViewContainerRef,TemplateRef,createCom ...

  10. 工具 – Cypress

    介绍 Cypress 是一款 e2e 测试工具.每当我们写好一个组件或者一个页面之后,我们会想对整体做一个测试. 在不使用工具的情况下,我们会开启 browser,然后做一系列点击.滚动.填 form ...