1 Scalar Function

\(\text{If }f(\mathbf{x})\in\mathbf{R},\mathrm{then}\)

\[df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial z}dz=\begin{bmatrix}\frac{\partial f}{\partial x}&\frac{\partial f}{\partial y}&\frac{\partial f}{\partial z}\end{bmatrix}\begin{bmatrix}dx\\dy\\dz\end{bmatrix}= f(\mathbf{x})' d\mathbf{x}.
\]

1.1 Derivative

So

\[\dfrac{\partial f}{\partial\mathbf{x}}=\begin{bmatrix}\dfrac{\partial f}{\partial x}&\dfrac{\partial f}{\partial y}&\dfrac{\partial f}{\partial z}\end{bmatrix} = f(\mathbf{x})'
\]

这里用的是 Numerator layout.

1.2 Gradient

\[\left.\nabla f=\left(\frac{\partial f}{\partial\mathbf{x}}\right)^{\mathsf{T}}=\left[\begin{array}{ccc}\frac{\partial f}{\partial x}&\frac{\partial f}{\partial y}&\frac{\partial f}{\partial z}\end{array}\right.\right]^{\mathsf{T}} = \begin{bmatrix}\frac{\partial f}{\partial x}\\\frac{\partial f}{\partial y}\\\frac{\partial f}{\partial z}\end{bmatrix}.
\]

2 Vector Function

\(\text{if }\mathbf{f}(\mathbf{x})=\begin{bmatrix}f(\mathbf{x})\\g(\mathbf{x})\\h(\mathbf{x})\end{bmatrix}\in\mathbf{R}^3,\text{then:}\)

2.1 Jacobian

\[\mathbf{J}(\mathbf{x})=\dfrac{\partial\mathbf{f}}{\partial\mathbf{x}}=\begin{bmatrix}\frac{\partial f}{\partial x}&\frac{\partial f}{\partial y}&\frac{\partial f}{\partial z}\\\frac{\partial g}{\partial x}&\frac{\partial g}{\partial y}&\frac{\partial g}{\partial z}\\\frac{\partial h}{\partial x}&\frac{\partial h}{\partial y}&\frac{\partial h}{\partial z}\end{bmatrix}
\]

2.2 Divergence

\[\nabla\cdot\mathbf{f}=\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}+\frac{\partial h}{\partial z}
\]

2.3 Curl

\[\nabla\times\mathbf{f}=\begin{bmatrix}\frac{\partial h}{\partial y}-\frac{\partial g}{\partial z}\\\frac{\partial f}{\partial z}-\frac{\partial h}{\partial x}\\\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\end{bmatrix}
\]

2.4 Hessian

\[\mathbf{H}=\mathbf{J}(\nabla f(\mathbf{x}))=\begin{bmatrix}\frac{\partial^2f}{\partial x^2}&\frac{\partial^2f}{\partial x\partial y}&\frac{\partial^2f}{\partial x\partial z}\\\frac{\partial^2f}{\partial y\partial x}&\frac{\partial^2f}{\partial y^2}&\frac{\partial^2f}{\partial y\partial z}\\\frac{\partial^2f}{\partial z \partial x}&\frac{\partial^2f}{\partial z \partial y}&\frac{\partial^2f}{\partial z^2}\end{bmatrix}
\]

https://www.value-at-risk.net/functions/

X ref

  1. HKU : Vector calculus for engineers
  2. MIT : s096-matrix-calculus-for-machine-learning
  3. GAMES103 : Physics-Based Animation
  4. Wikipedia : Matrix Calculus

Matrix Calculus的更多相关文章

  1. 学习的矩阵微积分The matrix calculus you need for deep learning

    学习的矩阵微积分The matrix calculus you need for deep learning https://explained.ai/matrix-calculus/index.ht ...

  2. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

    目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

  3. dir命令只显示文件名

    dir /b 就是ls -f的效果 1057 -- FILE MAPPING_web_archive.7z 2007 多校模拟 - Google Search_web_archive.7z 2083 ...

  4. [zt]矩阵求导公式

    今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --&g ...

  5. 矩阵的f范数及其求偏导法则

    转载自: http://blog.csdn.net/txwh0820/article/details/46392293 矩阵的迹求导法则   1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...

  6. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  7. NDT(Normal Distributions Transform)算法原理与公式推导

    正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...

  8. How do I learn mathematics for machine learning?

    https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics f ...

  9. 导数、多元函数、梯度、链式法则及 BP 神经网络

    一元函数的导数 对于函数\(y=f(x)\),导数可记做\(f'(x_0)\).\(y'|x=x_0\)或\(\frac{dy}{dx}|x=x_0 \).定义如下: \[f'(x_0) = \lim ...

  10. 方阵的迹(trace)及其微分(导数)

    trace 的一个十分重要的性质在于线性性, Tr(A+B)=Tr(A)+Tr(B)Tr(cA)=cTr(A) 1. 基本性质 Tr(A)=Tr(AT) Tr(AB)=Tr(BA) Tr(ABC)=T ...

随机推荐

  1. CentOS下离线安装gcc环境,图文详细,方法全面

    CentOS下离线安装gcc环境,图文详细,方法全面 下载 方式1:如果有网的虚拟机还没有安装,可以直接 yum install --downloadonly --downloaddir=/root/ ...

  2. 《重学Java设计模式》笔记——建造者模式

    1. 建造者模式可以解决什么问题 我家里有各种形状的瓷器,盘子或者碗.虽然形状不同,但是所用的材料基本上是一样的,比如土.水.釉.彩这些基本的东西. 但是做不同款式的瓷器,方法是不同的.假如说我现在已 ...

  3. python学习(一)django orm多表查询

    ###多表查询 一般的多表查询都是直接建立一个多对多关系 class Books(models.Model): users = models.ManyToManyField(User, related ...

  4. Flex相册

    有一个项目用到了Flex,于是抽时间用flex与java做了一个相册,并且添加了上传功能,不过暂时没有针对具体的用户进行存储.下面是图片:  

  5. C语言基础- Hello World

    第一个C语言程序 Hello World # include <stdio.h> //#关键标识符,表示用用头文件:include:引入都文件关键字 // stdio.h:系统标准输入.输 ...

  6. 作为程序员的我只负责修复旧bug制造新bug

      不知道什么时候开始写的这网站ttblog,只知道当时是一腔的激情,可是到今日,激情没了.可谓是古人云:"茅坑的屎香三天!"              记得当时刚毕业参加工作,可 ...

  7. WebShell流量特征检测_哥斯拉篇

    80后用菜刀,90后用蚁剑,95后用冰蝎和哥斯拉,以phpshell连接为例,本文主要是对这四款经典的webshell管理工具进行流量分析和检测. 什么是一句话木马? 1.定义 顾名思义就是执行恶意指 ...

  8. C++17: 用折叠表达式实现一个IsAllTrue函数

    前言 让我们实现一个 IsAllTrue 函数,支持变长参数,可传入多个表达式,必须全部计算为true,该函数才返回true. 本文记录了逐步实现与优化该函数的思维链,用到了以下现代C++新特性知识, ...

  9. 小tips:CSS3中的background-clip属性(背景的裁剪区域)

    CSS3中的background-clip属性,其主要是用来确定背景的裁剪区域,换句话说,就是如何控制元素背景显示区域. 语法如下: background-clip : border-box || p ...

  10. RxJS 系列 – 概念篇

    前言 很长一段时间没有写 Angular 了 (哎...全栈的命),近期计划又要开始回去写了,于是就开始做复习咯. 我的复习是从 JS > TS > RxJS > Angular,与 ...