Flink window
窗口计算
我们经常需要在一个时间窗口维度上对数据进行聚合,窗口是流处理应用中经常需要解决的问题。Flink的窗口算子为我们提供了方便易用的API,我们可以将数据流切分成一个个窗口,对窗口内的数据进行处理
按照有没有进行keyby分成了两种 不同的处理方式:
首先,我们要决定是否对一个DataStream按照Key进行分组,这一步必须在窗口计算之前进行。
windowAll不对数据流进行分组,所有数据将发送到后续执行的算子单个实例上。
经过windowAll的算子是不分组的窗口(Non-Keyed Window),它们的原理和操作与Keyed Window类似,唯一的区别在于所有数据将发送给下游的单个实例,或者说下游算子的并行度为1。
// Keyed Window
stream
.keyBy(...) <- 按照一个Key进行分组
.window(...) <- 将数据流中的元素分配到相应的窗口中
[.trigger(...)] <- 指定触发器Trigger(可选)
[.evictor(...)] <- 指定清除器Evictor(可选)
.reduce/aggregate/process() <- 窗口处理函数Window Function
// Non-Keyed Window
stream
.windowAll(...) <- 不分组,将数据流中的所有元素分配到相应的窗口中
[.trigger(...)] <- 指定触发器Trigger(可选)
[.evictor(...)] <- 指定清除器Evictor(可选)
.reduce/aggregate/process() <- 窗口处理函数Window Function
窗口生命周期
- 一个窗口在第一个属于它的元素到达时就会被创建,然后在时间(event 或 processing time) 超过窗口的“结束时间戳 + 用户定义的 allowed lateness (详见 Allowed Lateness)”时 被完全删除.
对于一个基于 event time 且范围互不重合(滚动)的窗口策略, 如果窗口设置的时长为五分钟、可容忍的迟到时间(allowed lateness)为 1 分钟, 那么第一个元素落入 12:00 至 12:05 这个区间时,Flink 就会为这个区间创建一个新的窗口。 当 watermark 越过 12:06 时,这个窗口将被摧毁。
每个窗口会设置自己的 Trigger 和 function (ProcessWindowFunction、ReduceFunction、或 AggregateFunction, )。该 function 决定如何计算窗口中的内容, 而 Trigger 决定何时窗口中的数据可以被 function 计算
也可以指定一个 Evictor ),在 trigger 触发之后,Evictor 可以在窗口函数的前后删除数据。
Window Assigners
Window assigner 定义了 stream 中的元素如何被分发到各个窗口
Flink 为最常用的情况提供了一些定义好的 window assigner,也就是 tumbling windows、 sliding windows、 session windows 和 global windows。
可以继承 WindowAssigner 类来实现自定义的 window assigner。 所有内置的 window assigner(除了 global window)都是基于时间分发数据的,processing time 或 event time 均可
基于时间的窗口用 start timestamp(包含)和 end timestamp(不包含)描述窗口的大小。 在代码中,Flink 处理基于时间的窗口使用的是 TimeWindow, 它有查询开始和结束 timestamp 以及返回窗口所能储存的最大 timestamp 的方法 maxTimestamp()
滚动窗口(Tumbling Windows)
滚动窗口的大小是固定的,且各自范围之间不重叠
val input: DataStream[T] = ...
// 滚动 event-time 窗口
input
.keyBy(<key selector>)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.<windowed transformation>(<window function>)
// 滚动 processing-time 窗口
input
.keyBy(<key selector>)
.window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
.<windowed transformation>(<window function>)
// 长度为一天的滚动 event-time 窗口,偏移量为 -8 小时。
input
.keyBy(<key selector>)
.window(TumblingEventTimeWindows.of(Time.days(1), Time.hours(-8)))
.<windowed transformation>(<window function>)
滑动窗口(Sliding Windows)
窗口大小是固定的,窗口有可能有重叠。窗口会有一个滑动步长
al input: DataStream[T] = ...
// 滑动 event-time 窗口
input
.keyBy(<key selector>)
.window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))
.<windowed transformation>(<window function>)
// 滑动 processing-time 窗口
input
.keyBy(<key selector>)
.window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5)))
.<windowed transformation>(<window function>)
// 滑动 processing-time 窗口,偏移量为 -8 小时
input
.keyBy(<key selector>)
.window(SlidingProcessingTimeWindows.of(Time.hours(12), Time.hours(1), Time.hours(-8)))
.<windowed transformation>(<window function>)
会话窗口(Session Windows)
窗口大小不固定,窗口之间会有一个间隙(gap).会话窗口根据Session gap切分不同的窗口,当一个窗口在大于Session gap的时间内没有接收到新数据时,窗口将关闭。在这种模式下,窗口的长度是可变的,每个窗口的开始和结束时间并不是确定的
val input: DataStream[T] = ...
// 设置了固定间隔的 event-time 会话窗口
input
.keyBy(<key selector>)
.window(EventTimeSessionWindows.withGap(Time.minutes(10)))
.<windowed transformation>(<window function>)
// 设置了动态间隔的 event-time 会话窗口
input
.keyBy(<key selector>)
.window(EventTimeSessionWindows.withDynamicGap(new SessionWindowTimeGapExtractor[String] {
override def extract(element: String): Long = {
// 决定并返回会话间隔
}
}))
.<windowed transformation>(<window function>)
// 设置了固定间隔的 processing-time 会话窗口
input
.keyBy(<key selector>)
.window(ProcessingTimeSessionWindows.withGap(Time.minutes(10)))
.<windowed transformation>(<window function>)
// 设置了动态间隔的 processing-time 会话窗口
input
.keyBy(<key selector>)
.window(DynamicProcessingTimeSessionWindows.withDynamicGap(new SessionWindowTimeGapExtractor[String] {
override def extract(element: String): Long = {
// 决定并返回会话间隔
}
}))
.<windowed transformation>(<window function>)
全局窗口(Global Windows)
整个数据流是一个窗口,因为数据流是无界的,所以全局窗口默认情况下,永远不会触发计算数据, 要定义trigger
val input: DataStream[T] = ...
input
.keyBy(<key selector>)
.window(GlobalWindows.create())
.<windowed transformation>(<window function>)
窗口函数
窗口函数主要分为两种,一种是增量计算,如reduce和aggregate,一种是全量计算,如process。
- 增量计算指的是窗口保存一份中间数据,每流入一个新元素,新元素与中间数据两两合一,生成新的中间数据,再保存到窗口中
2.全量计算指的是窗口先缓存该窗口所有元素,等到触发条件后对窗口内的全量元素执行计算
ReduceFunction
ReduceFunction 指定两条输入数据如何合并起来产生一条输出数据,输入和输出数据的类型必须相同。 Flink 使用 ReduceFunction 对窗口中的数据进行增量聚合。
val input: DataStream[(String, Long)] = ...
input
.keyBy(<key selector>)
.window(<window assigner>)
.reduce { (v1, v2) => (v1._1, v1._2 + v2._2) }
AggregateFunction
ReduceFunction 是 AggregateFunction 的特殊情况。 AggregateFunction 接收三个类型:输入数据的类型(IN)、累加器的类型(ACC)和输出数据的类型(OUT)。 输入数据的类型是输入流的元素类型,AggregateFunction 接口有如下几个方法: 把每一条元素加进累加器、创建初始累加器、合并两个累加器、从累加器中提取输出(OUT 类型
class AverageAggregate extends AggregateFunction[(String, Long), (Long, Long), Double] {
override def createAccumulator() = (0L, 0L)
override def add(value: (String, Long), accumulator: (Long, Long)) =
(accumulator._1 + value._2, accumulator._2 + 1L)
override def getResult(accumulator: (Long, Long)) = accumulator._1 / accumulator._2
override def merge(a: (Long, Long), b: (Long, Long)) =
(a._1 + b._1, a._2 + b._2)
}
val input: DataStream[(String, Long)] = ...
input
.keyBy(<key selector>)
.window(<window assigner>)
.aggregate(new AverageAggregate)
ProcessWindowFunction
ProcessWindowFunction 有能获取包含窗口内所有元素的 Iterable, 以及用来获取时间和状态信息的 Context 对象,比其他窗口函数更加灵活。 ProcessWindowFunction 的灵活性是以性能和资源消耗为代价的, 因为窗口中的数据无法被增量聚合,而需要在窗口触发前缓存所有数据。
val input: DataStream[(String, Long)] = ...
input
.keyBy(_._1)
.window(TumblingEventTimeWindows.of(Time.minutes(5)))
.process(new MyProcessWindowFunction())
/* ... */
class MyProcessWindowFunction extends ProcessWindowFunction[(String, Long), String, String, TimeWindow] {
def process(key: String, context: Context, input: Iterable[(String, Long)], out: Collector[String]) = {
var count = 0L
for (in <- input) {
count = count + 1
}
out.collect(s"Window ${context.window} count: $count")
}
}
增量聚合的 ProcessWindowFunction
ProcessWindowFunction 可以与 ReduceFunction 或 AggregateFunction 搭配使用,它就可以增量聚合窗口的元素并且从 ProcessWindowFunction` 中获得窗口的元数据。
val input: DataStream[SensorReading] = ...
input
.keyBy(<key selector>)
.window(<window assigner>)
.reduce(
(r1: SensorReading, r2: SensorReading) => { if (r1.value > r2.value) r2 else r1 },
( key: String,
context: ProcessWindowFunction[_, _, _, TimeWindow]#Context,
minReadings: Iterable[SensorReading],
out: Collector[(Long, SensorReading)] ) =>
{
val min = minReadings.iterator.next()
out.collect((context.window.getStart, min))
}
)
Triggers
Trigger 决定了一个窗口(由 window assigner 定义)何时可以被 window function 处理
Trigger 接口提供了五个方法来响应不同的事件:
- onElement() 方法在每个元素被加入窗口时调用。
- onEventTime() 方法在注册的 event-time timer 触发时调用。
- onProcessingTime() 方法在注册的 processing-time timer 触发时调用。
- onMerge() 方法与有状态的 trigger 相关。该方法会在两个窗口合并时, 将窗口对应 trigger 的状态进行合并,比如使用会话窗口时。
- clear() 方法处理在对应窗口被移除时所需的逻辑。
Evictors
Flink 的窗口模型允许在 WindowAssigner 和 Trigger 之外指定可选的 Evictor。 如本文开篇的代码中所示,通过 evictor(...) 方法传入 Evictor。 Evictor 可以在 trigger 触发后、调用窗口函数之前或之后从窗口中删除元素
Flink 内置有三个 evictor:
CountEvictor: 仅记录用户指定数量的元素,一旦窗口中的元素超过这个数量,多余的元素会从窗口缓存的开头移除
DeltaEvictor: 接收 DeltaFunction 和 threshold 参数,计算最后一个元素与窗口缓存中所有元素的差值, 并移除差值大于或等于 threshold 的元素。
TimeEvictor: 接收 interval 参数,以毫秒表示。 它会找到窗口中元素的最大 timestamp max_ts 并移除比 max_ts - interval 小的所有元素。
默认情况下,所有内置的 evictor 逻辑都在调用窗口函数前执行。
Allowed Lateness
默认情况下,watermark 一旦越过窗口结束的 timestamp,迟到的数据就会被直接丢弃。 但是 Flink 允许指定窗口算子最大的 allowed lateness。 Allowed lateness 定义了一个元素可以在迟到多长时间的情况下不被丢弃,这个参数默认是 0。 在 watermark 超过窗口末端、到达窗口末端加上 allowed lateness 之前的这段时间内到达的元素, 依旧会被加入窗口。取决于窗口的 trigger,一个迟到但没有被丢弃的元素可能会再次触发窗口,比如 EventTimeTrigger
val input: DataStream[T] = ...
input
.keyBy(<key selector>)
.window(<window assigner>)
.allowedLateness(<time>)
.<windowed transformation>(<window function>)
关于状态大小的考量
Flink 会为一个元素在它所属的每一个窗口中都创建一个副本
,设置一个大小为一天、滑动距离为一秒的滑动窗口可能不是个好想法educeFunction 和 AggregateFunction 可以极大地减少储存需求,因为他们会就地聚合到达的元素, 且每个窗口仅储存一个值。而使用 ProcessWindowFunction 需要累积窗口中所有的元素
使用 Evictor 可以避免预聚合, 因为窗口中的所有数据必须先经过 evictor 才能进行计算
Reference
Flink window的更多相关文章
- 一文搞懂Flink Window机制
Windows是处理无线数据流的核心,它将流分割成有限大小的桶(buckets),并在其上执行各种计算. 窗口化的Flink程序的结构通常如下,有分组流(keyed streams)和无分组流(non ...
- Flink – window operator
参考, http://wuchong.me/blog/2016/05/25/flink-internals-window-mechanism/ http://wuchong.me/blog/201 ...
- flink window的early计算
Tumbing Windows:滚动窗口,窗口之间时间点不重叠.它是按照固定的时间,或固定的事件个数划分的,分别可以叫做滚动时间窗口和滚动事件窗口.Sliding Windows:滑动窗口,窗口之间时 ...
- flink Window的Timestamps/Watermarks和allowedLateness的区别
Watermartks是通过additional的时间戳来控制窗口激活的时间,allowedLateness来控制窗口的销毁时间. 注: 因为此特性包括官方文档在1.3-1.5版本均未做改变,所以 ...
- Flink window机制
此文已由作者岳猛授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 问题 window是解决流计算中的什么问题? 怎么划分window?有哪几种window?window与时间属 ...
- flink window实例分析
window是处理数据的核心.按需选择你需要的窗口类型后,它会将传入的原始数据流切分成多个buckets,所有计算都在window中进行. flink本身提供的实例程序TopSpeedWindowin ...
- 【翻译】Flink window
本文翻译自flink官网:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/stream/operators/window ...
- Apache Flink - Window
Window: 在Streaming中,数据是无限且连续的,我们不可能等所有数据都到才进行处理,我们可以来一个就处理一下,但是有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们 ...
- Flink Window窗口机制
总览 Window 是flink处理无限流的核心,Windows将流拆分为有限大小的"桶",我们可以在其上应用计算. Flink 认为 Batch 是 Streaming 的一个特 ...
- Flink Window&Time 原理
Flink 中可以使用一套 API 完成对有界数据集以及无界数据的统一处理,而无界数据集的处理一般会伴随着对某些固定时间间隔的数据聚合处理.比如:每五分钟统计一次系统活跃用户.每十秒更新热搜榜单等等 ...
随机推荐
- 实习记录day03:尝试写一个接口
前言:今天突然意识到,实习记录很少有技术性的东西,更多的是自己的心里活动和一些感想,其实这类博客更趋向于日记而非技术记录.也许哪天不再充满兴趣了,这个实习记录也就结束了(想下班了同志们) 实习第三天: ...
- Camera | 12.瑞芯微摄像头自动焦距马达驱动移植
本为你主要讲解如何让摄像头ov13850支持自动对焦功能. 摄像头的对角主要通过VCM马达驱动芯片DW9714来实现的. 一.环境 soc : rk3568 board: EVB1-DDR4-V10 ...
- 作为程序员的我只负责修复旧bug制造新bug
不知道什么时候开始写的这网站ttblog,只知道当时是一腔的激情,可是到今日,激情没了.可谓是古人云:"茅坑的屎香三天!" 记得当时刚毕业参加工作,可 ...
- stm32学习之ADC入门
ADC_SampleTime 用途:在ADC通道配置(ADC_RegularChannelConfig)需要传输的参数. 含义:指两个采样阶段之间的延迟周期数,该参数会影响ADC在采样过程中的性能和准 ...
- XeLaTeX 无法编译含有经过 pdfcrop 裁剪的 PDF 文件的文档
今天在写 LaTeX 文档时踩了个大坑,我在文档里插入了一个 PDF 图片之后文档无法编译了. 于是我去掉多余代码,做了一个最小工作示例: \documentclass{article} \usepa ...
- Spring:基于注解管理bean
标记与扫描 注解 和 XML 配置文件一样,注解本身并不能执行,注解本身仅仅只是做一个标记,具体的功能是框架检测 到注解标记的位置,然后针对这个位置按照注解标记的功能来执行具体操作. 本质上:所有一切 ...
- k8s 知识
命令 Pod 管理 kubectl get pods 查看pod在哪个node上 kubectl get pods -o wide kubectl describe pod pod_name 创建新的 ...
- Entity Framework Plus: 让 EF Core 开发如虎添翼
EF Core介绍 Entity Framework (EF) Core 是轻量化.可扩展.开源和跨平台版的常用 Entity Framework 数据访问技术,EF Core 是适用于 .NET 的 ...
- ASP.NET Core – Globalization & Localization
前言 之前就写过 2 篇, 只是写的很乱, 这篇作为整理版. Asp.net core (学习笔记 路由和语言 route & language) Asp.net core 学习笔记之 glo ...
- linux java 初始环境配置
linux初始环境配置 1.设置IP 查看虚拟机ip地址:ip addr 修改ip地址 Vi /etc/sysconfig/network~scrips/ifcfg-ens33(不一定是33 动态的) ...