UVa 104 - Arbitrage(Floyd动态规划)
| Arbitrage |
Background
The use of computers in the finance industry has been marked with controversy lately as programmed trading -- designed to take advantage of extremely small fluctuations in prices -- has been outlawed at many Wall Street firms. The ethics of computer programming is a fledgling field with many thorny issues.
The Problem
Arbitrage is the trading of one currency for another with the hopes of taking advantage of small differences in conversion rates among several currencies in order to achieve a profit. For example, if $1.00 in U.S. currency buys 0.7 British pounds currency, £1 in British currency buys 9.5 French francs, and 1 French franc buys 0.16 in U.S. dollars, then an arbitrage trader can start with $1.00 and earn
dollars thus earning a profit of 6.4 percent.
You will write a program that determines whether a sequence of currency exchanges can yield a profit as described above.
To result in successful arbitrage, a sequence of exchanges must begin and end with the same currency, but any starting currency may be considered.
The Input
The input file consists of one or more conversion tables. You must solve the arbitrage problem for each of the tables in the input file.
Each table is preceded by an integer n on a line by itself giving the dimensions of the table. The maximum dimension is 20; the minimum dimension is 2.
The table then follows in row major order but with the diagonal elements of the table missing (these are assumed to have value 1.0). Thus the first row of the table represents the conversion rates between country 1 and n-1 other countries, i.e., the amount of currency of country i (
) that can be purchased with one unit of the currency of country 1.
Thus each table consists of n+1 lines in the input file: 1 line containing n and n lines representing the conversion table.
The Output
For each table in the input file you must determine whether a sequence of exchanges exists that results in a profit of more than 1 percent (0.01). If a sequence exists you must print the sequence of exchanges that results in a profit. If there is more than one sequence that results in a profit of more than 1 percent you must print a sequence of minimal length, i.e., one of the sequences that uses the fewest exchanges of currencies to yield a profit.
Because the IRS (United States Internal Revenue Service) notices lengthy transaction sequences, all profiting sequences must consist of n or fewer transactions where n is the dimension of the table giving conversion rates. The sequence 1 2 1 represents two conversions.
If a profiting sequence exists you must print the sequence of exchanges that results in a profit. The sequence is printed as a sequence of integers with the integer i representing the
line of the conversion table (country i). The first integer in the sequence is the country from which the profiting sequence starts. This integer also ends the sequence.
If no profiting sequence of n or fewer transactions exists, then the line
no arbitrage sequence exists
should be printed.
Sample Input
3
1.2 .89
.88 5.1
1.1 0.15
4
3.1 0.0023 0.35
0.21 0.00353 8.13
200 180.559 10.339
2.11 0.089 0.06111
2
2.0
0.45
Sample Output
1 2 1
1 2 4 1
no arbitrage sequence exists
解题思路:
给出n种国家的货币汇率,一定金额的某种货币经过一系列汇率变换后再换成原来货币,金额增加了,求出这样的一个变换,要求变换步数最少。
Floyd变形,关于Floyd动态规划的理解。
状态转移方程:
f[k][i][j]=min(f[k-1][i][j],f[k-1][i][k]+f[k-1][k][j])
f[k][i][j]表示只经过前k个点(包括k),从i到j的最小值。当k从1到n时,就是从i到j的最小值。我们熟悉的用二维数组的写法实际上是对空间的一种压缩。
解释一下:
计算只经过前k个点,从i到j的最小值时,有两种情况需要考虑:经过第k个点和不经过第k个点。经过第k个点则距离应是从i到k的最小值和从k到j的最小值,两个最小值的路径都必须只经过前k-1个点(为什么是k-1而不是k,事实上他们两数值相同,因为起点和终点已经有第k个点,只是在dp的过程中先产生k-1,f[k][i][k]和f[k][k][j]有可能比f[k][i][j]的值晚计算出,就不能在计算f[k][i][j]时用到这两个值)。不经过k的点则距离与只经过前k-1个点时一样。
参考代码:
#include <cstdio>
#include <cstring>
#define N 25
double dp[N][N][N],p[N][N][N];
int n; void print_path(int i ,int j , int s)
{
if(s==)
{
printf("%d",i);
return ;
}
print_path(i, p[i][j][s] ,s-);
printf(" %d",j);
return ;
}
void DP()
{
int s,m;
for(s=; s<=n; s++)
{
for(int k=; k<=n; k++)
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if( dp[i][j][s] < dp[i][k][s-]*dp[k][j][])
{
dp[i][j][s]=dp[i][k][s-]*dp[k][j][];
p[i][j][s]=k;
}
int i;
for(i=; i<=n; i++)
if(dp[i][i][s]>1.01)
{
m=i ;
break;
}
if(i<=n)
break;
}
if(s>n)
printf("no arbitrage sequence exists");
else
print_path(m , m , s); printf("\n");
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
memset(dp,,sizeof(dp));
memset(p,,sizeof(p));
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
{
if(i==j) dp[i][j][]=;
else
scanf("%lf",&dp[i][j][]);
p[i][j][]=j;
}
DP();
}
return ;
}
具体分析推荐博客:http://www.cnblogs.com/scau20110726/archive/2012/12/26/2834674.html
UVa 104 - Arbitrage(Floyd动态规划)的更多相关文章
- uva 104 Arbitrage (DP + floyd)
uva 104 Arbitrage Description Download as PDF Background The use of computers in the finance industr ...
- UVA 104 Arbitrage
动态规划类似FLOYD dp[i][j][k] 表示第i个点经过K次到达j点能获得的最大利润 #include <map> #include <set> #include &l ...
- UVA 436 - Arbitrage (II)(floyd)
UVA 436 - Arbitrage (II) 题目链接 题意:给定一些国家货币的汇率.问是否能通过不断换货币使钱得到增长 思路:floyd,完事后推断一下有没有连到自己能大于1的情况 代码: #i ...
- UVa(247),Floyd做传递闭包
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- HDU 1217 Arbitrage (Floyd)
Arbitrage http://acm.hdu.edu.cn/showproblem.php?pid=1217 Problem Description Arbitrage is the use of ...
- POJ2240——Arbitrage(Floyd算法变形)
Arbitrage DescriptionArbitrage is the use of discrepancies in currency exchange rates to transform o ...
- Nyoj Arbitrage(Floyd or spfa or Bellman-Ford)
描述Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a curren ...
- UVa 12099 The Bookcase - 动态规划
题目大意 给定一些书,每个书有一个高度和宽度,然后将它们放到一个三层的书架里(要求每一层都不为空).定义书架的大小为每层最大的高度和 乘 每层宽度和的最大值.求最小的书架大小. 显然动态规划(直觉,没 ...
- UVa 1626 Brackets sequence (动态规划)
题意:用最少的括号将给定的字符串匹配,输出最优解.可能有空行. 思路:dp. dp[i][j]表示将区间i,j之间的字符串匹配需要的最少括号数,那么 如果区间左边是(或[,表示可以和右边的字符串匹配, ...
随机推荐
- [SLAM] 02 Some algorithms of 3D reconstruction
链接:http://www.zhihu.com/question/29885222/answer/100043031 首先一切建立在相机模型 x = kPX 上 x,X分别代表图片和空间中的二维三 ...
- Click Models for Web Search(2) - Parameter Estimation
在Click Model中进行参数预估的方法有两种:最大似然(MLE)和期望最大(EM).至于每个click model使用哪种参数预估的方法取决于此model中的随机变量的特性.如果model中的随 ...
- Linux磁盘操作命令
查看本地磁盘使用情况:df或者df -l单位为k 容量便于查看,以1024单位换算为M或者G等:df -h或者df -lh 以1000为单位换算:df -H 显示文件系统类型:df -T 显示指定文件 ...
- Java魔法堂:注解用法详解——@Override
一.前言 现在有Son和Parent两个类,且类型Son将会重写类型Parent的getName函数.但不幸的是由于码农大意,写成如下代码: public class Parent{ public S ...
- mysql update时报错You are using safe update mode
在使用mysql执行update的时候,如果不是用主键当where语句,会报如下错误,使用主键用于where语句中正常. ) Error Code: . You are using safe upda ...
- .NET程序的编译和运行
程序的编译和运行,总得来说大体是:首先写好的程序是源代码,然后编译器编译为本地机器语言,最后在本地操作系统运行. 下图为传统代码编译运行过程: .NET的编译和运行过程与之类似,首先编写好的源代码,然 ...
- .net开发微信公众平台
一.说明:公众平台信息接口为开发者提供了一种新的消息处理方式,只有申请成为开发者后,你才能使用公众平台的开发功能,在这里你需要填写一个URL和一个Token,这两项信息也需要你拥有自己的服务器(外网服 ...
- 【循序渐进学Python】2. Python中的序列——列表和元组
序列概览 在Python中有六种内建的序列:列表.元组.字符串.Unicode字符串.buffer对象和xrange对象.在这里暂时只讨论列表和元组.列表和元组的主要区别在于:列表可以修改,元组(不可 ...
- 默认选中ComboBox的某一项
如: 让它选中“统计今天”(控件Name为cobListTime) 方法: 1.cobListTime.Text = cobListTime.Items[0].ToString();//默认选中第一个 ...
- ahjesus配置vsftpd和xinetd
vsftpd的简单配置参考此教程 传送门 教程内xinetd的配置失效, 用xinetd方式启动ftp方式如下 1.在/etc/xinetd.d/目录中创建一个文件vsftpd 内容如下: servi ...