字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)
在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录。
据百度百科介绍:
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k→s)
sittin (e→i)
sitting (→g)
俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。因此也叫Levenshtein Distance。
例如
- 如果str1="ivan",str2="ivan",那么经过计算后等于 0。没有经过转换。相似度=1-0/Math.Max(str1.length,str2.length)=1
- 如果str1="ivan1",str2="ivan2",那么经过计算后等于1。str1的"1"转换"2",转换了一个字符,所以距离是1,相似度=1-1/Math.Max(str1.length,str2.length)=0.8
应用
DNA分析
拼字检查
语音辨识
抄袭侦测
感谢大石头在评论中给出一个很好的关于此方法应用的连接 补充在此:
小规模的字符串近似搜索,需求类似于搜索引擎中输入关键字,出现类似的结果列表,文章连接:【算法】字符串近似搜索
算法过程
- str1或str2的长度为0返回另一个字符串的长度。 if(str1.length==0) return str2.length; if(str2.length==0) return str1.length;
- 初始化(n+1)*(m+1)的矩阵d,并让第一行和列的值从0开始增长。
- 扫描两字符串(n*m级的),如果:str1[i] == str2[j],用temp记录它,为0。否则temp记为1。然后在矩阵d[i,j]赋于d[i-1,j]+1 、d[i,j-1]+1、d[i-1,j-1]+temp三者的最小值。
- 扫描完后,返回矩阵的最后一个值d[n][m]即是它们的距离。
计算相似度公式:1-它们的距离/两个字符串长度的最大值。
为了直观表现,我将两个字符串分别写到行和列中,实际计算中不需要。我们用字符串“ivan1”和“ivan2”举例来看看矩阵中值的状况:
1、第一行和第一列的值从0开始增长
| i | v | a | n | 1 | ||
| 0 | 1 | 2 | 3 | 4 | 5 | |
| i | 1 | |||||
| v | 2 | |||||
| a | 3 | |||||
| n | 4 | |||||
| 2 | 5 |
2、i列值的产生 Matrix[i - 1, j] + 1 ; Matrix[i, j - 1] + 1 ; Matrix[i - 1, j - 1] + t
| i | v | a | n | 1 | ||
| 0+t=0 | 1+1=2 | 2 | 3 | 4 | 5 | |
| i | 1+1=2 | 取三者最小值=0 | ||||
| v | 2 | 依次类推:1 | ||||
| a | 3 | 2 | ||||
| n | 4 | 3 | ||||
| 2 | 5 | 4 |
3、V列值的产生
| i | v | a | n | 1 | ||
| 0 | 1 | 2 | ||||
| i | 1 | 0 | 1 | |||
| v | 2 | 1 | 0 | |||
| a | 3 | 2 | 1 | |||
| n | 4 | 3 | 2 | |||
| 2 | 5 | 4 | 3 |
依次类推直到矩阵全部生成
| i | v | a | n | 1 | ||
| 0 | 1 | 2 | 3 | 4 | 5 | |
| i | 1 | 0 | 1 | 2 | 3 | 4 |
| v | 2 | 1 | 0 | 1 | 2 | 3 |
| a | 3 | 2 | 1 | 0 | 1 | 2 |
| n | 4 | 3 | 2 | 1 | 0 | 1 |
| 2 | 5 | 4 | 3 | 2 | 1 | 1 |
最后得到它们的距离=1
相似度:1-1/Math.Max(“ivan1”.length,“ivan2”.length) =0.8
算法用C#实现
public class LevenshteinDistance
{
/// <summary>
/// 取最小的一位数
/// </summary>
/// <param name="first"></param>
/// <param name="second"></param>
/// <param name="third"></param>
/// <returns></returns>
private int LowerOfThree(int first, int second, int third)
{
int min = Math.Min(first, second);
return Math.Min(min, third);
} private int Levenshtein_Distance(string str1, string str2)
{
int[,] Matrix;
int n = str1.Length;
int m = str2.Length; int temp = 0;
char ch1;
char ch2;
int i = 0;
int j = 0;
if (n == 0)
{
return m;
}
if (m == 0)
{ return n;
}
Matrix = new int[n + 1, m + 1]; for (i = 0; i <= n; i++)
{
//初始化第一列
Matrix[i, 0] = i;
} for (j = 0; j <= m; j++)
{
//初始化第一行
Matrix[0, j] = j;
} for (i = 1; i <= n; i++)
{
ch1 = str1[i - 1];
for (j = 1; j <= m; j++)
{
ch2 = str2[j - 1];
if (ch1.Equals(ch2))
{
temp = 0;
}
else
{
temp = 1;
}
Matrix[i, j] = LowerOfThree(Matrix[i - 1, j] + 1, Matrix[i, j - 1] + 1, Matrix[i - 1, j - 1] + temp);
}
}
for (i = 0; i <= n; i++)
{
for (j = 0; j <= m; j++)
{
Console.Write(" {0} ", Matrix[i, j]);
}
Console.WriteLine("");
} return Matrix[n, m];
} /// <summary>
/// 计算字符串相似度
/// </summary>
/// <param name="str1"></param>
/// <param name="str2"></param>
/// <returns></returns>
public decimal LevenshteinDistancePercent(string str1, string str2)
{
//int maxLenth = str1.Length > str2.Length ? str1.Length : str2.Length;
int val = Levenshtein_Distance(str1, str2);
return 1 - (decimal)val / Math.Max(str1.Length, str2.Length);
}
}
|
1
|
<strong>调用</strong> |
static void Main(string[] args)
{
string str1 = "ivan1";
string str2 = "ivan2";
Console.WriteLine("字符串1 {0}", str1); Console.WriteLine("字符串2 {0}", str2); Console.WriteLine("相似度 {0} %", new LevenshteinDistance().LevenshteinDistancePercent(str1, str2) * 100);
Console.ReadLine();
}
|
1
|
<strong>结果</strong> |

http://www.cnblogs.com/ivanyb/archive/2011/11/25/2263356.html
字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)的更多相关文章
- [Irving]字符串相似度-字符编辑距离算法(c#实现)
编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字 ...
- 扒一扒编辑距离(Levenshtein Distance)算法
最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...
- Java 比较两个字符串的相似度算法(Levenshtein Distance)
转载自: https://blog.csdn.net/JavaReact/article/details/82144732 算法简介: Levenshtein Distance,又称编辑距离,指的是两 ...
- 编辑距离算法(Levenshtein)
编辑距离定义: 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数. 许可的编辑操作包括:将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如 ...
- Go 实现字符串相似度计算函数 Levenshtein 和 SimilarText
[转]http://www.syyong.com/Go/Go-implements-the-string-similarity-calculation-function-Levenshtein-and ...
- 字符串相似度算法(编辑距离算法 Levenshtein Distance)
在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录.据百度百科介绍:编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串 ...
- 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)
在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...
- [转]字符串相似度算法(编辑距离算法 Levenshtein Distance)
转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...
- 字符串相似度算法——Levenshtein Distance算法
Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...
随机推荐
- Android bitmap高效显示和优化
第一部分:Bitmap高效显示 应用场景:有时候我们想在界面上显示一个网络图片或者显示一张本地的图片,但是图片本身是很大的有几兆,但是显示的位置很小或者说我们可以用更小的图片来满足这样的需求,如果把整 ...
- Cocos2d-X-3.0之后的版本的环境搭建
由于cocos2d游戏开发引擎更新十分频繁,官方文档同步不够及时和完善.所以不要照着官方文档来照做生成工程. <点击图片就能进入网站> 具体的步骤: 1.获取cocos2d-X的源码v3. ...
- win7共享文件夹给局域网
1.设置共享 2.关闭"需要密码访问"
- 敏捷软件开发(1)--- STATE 模式
如果状态在运行过程中,不停的切换和改变,我们怎么办? 状态的迁移是我们生活和工程中非常普遍的一个概念.于是在数学上有一种理论来分析和解决这个问题. 有限状态机理论是一个非常成熟的理论,所有动作和流程的 ...
- centos7 拨号之后添加路由
问题:拨号主机再自动拨号(/sbin/ifdown ppp0;/sbin/ifup ppp0)之后,无法上网(没有添加路由) 思路:在拨号程序中添加路由代码 vim /sbin/ifup { slee ...
- 用PowerDesigner将SQL语句生成实体类
1.首先打开PowerDesigner,点击左上角“File”—>"Reverse Engineer"—>"Database..." 2.选择数据库 ...
- nyoj 712 探 寻 宝 藏--最小费用最大流
问题 D: 探 寻 宝 藏 时间限制: 1 Sec 内存限制: 128 MB 题目描述 传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物.某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有 ...
- linux 创建和删除目录
创建目录命令 mkdir 目录名 [root@wang whp]# mkdir catalog[root@wang whp]# lscatalog [root@wang whp]# mkdir cat ...
- jquery获取复选框(checkbox)的选中值(一组和单个)
使用jquery获取一组或者单个checkbox的选中状态的值.下面通过一个示例进行说明,假设现有一页面有一组checkbox的name的值为id,那么获取这组name=id的checkbox的值的方 ...
- Python的逻辑运算符and小析
近期突然对验证码的识别感兴趣了,然后就研究了一些图像识别和处理的资料,其中有一种图像处理是关于字体的细化和骨架提取的,但是这种算法没有现成的java代码实现,那些号称的java版代码多半都是效果很差或 ...