题意:给一个元素周期表的元素符号(114种),再给一个串,问这个串能否有这些元素符号组成(全为小写)。

解法1:动态规划

定义:dp[i]表示到 i 这个字符为止,能否有元素周期表里的符号构成。

则有转移方程:dp[i] = (dp[i-1]&&f(i-1,1)) || (dp[i-2]&&f(i-2,2))     f(i,k):表示从i开始填入k个字符,这k个字符在不在元素周期表中。  dp[0] = 1

代码:

//109ms 0KB
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
using namespace std;
#define N 50007 string single[] = {"h","b","c","n","o","f","k","p","s","y","i","w","u","v"};
string ss[] = {"he","li","be","ne","na","mg",
"al","si","cl","ar","ca","sc","ti","cr","mn",
"fe","co","ni","cu","zn","ga","ge","as","se",
"br","kr","rb","sr","zr","nb","mo","tc","ru",
"rh","pd","ag","cd","in","sn","sb","te","xe",
"cs","ba","hf","ta","re","os","ir","pt","au",
"hg","tl","pb","bi","po","at","rn","fr","ra",
"rf","db","sg","bh","hs","mt","ds","rg","cn",
"fl","lv","la","ce","pr","nd","pm","sm","eu",
"gd","tb","dy","ho","er","tm","yb","lu","ac",
"th","pa","np","pu","am","cm","bk","cf","es",
"fm","md","no","lr"}; int vis[][],tag[];
int dp[N];
char st[N]; void init()
{
memset(vis,,sizeof(vis));
memset(tag,,sizeof(tag));
for(int i=;i<;i++)
tag[single[i][]-'a'] = ;
for(int i=;i<;i++)
vis[ss[i][]-'a'][ss[i][]-'a'] = ;
} int main()
{
int t,len,i;
init();
scanf("%d",&t);
while(t--)
{
scanf("%s",st+);
len = strlen(st+);
memset(dp,,sizeof(dp));
dp[] = ;
for(i=;i<len;i++)
{
if(dp[i])
{
if(tag[st[i+]-'a'])
dp[i+] = ;
dp[i+] |= vis[st[i+]-'a'][st[i+]-'a'];
}
}
if(dp[len])
puts("YES");
else
puts("NO");
}
return ;
}

解法2:DFS

搜索时循环的是元素周期表的符号个数。详见代码

代码: (306ms)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
using namespace std;
#define N 50007 string ss[] = {"h","b","c","n","o","f","k","p","s","y","i","w","u","v","he","li","be","ne","na","mg",
"al","si","cl","ar","ca","sc","ti","cr","mn",
"fe","co","ni","cu","zn","ga","ge","as","se",
"br","kr","rb","sr","zr","nb","mo","tc","ru",
"rh","pd","ag","cd","in","sn","sb","te","xe",
"cs","ba","hf","ta","re","os","ir","pt","au",
"hg","tl","pb","bi","po","at","rn","fr","ra",
"rf","db","sg","bh","hs","mt","ds","rg","cn",
"fl","lv","la","ce","pr","nd","pm","sm","eu",
"gd","tb","dy","ho","er","tm","yb","lu","ac",
"th","pa","np","pu","am","cm","bk","cf","es",
"fm","md","no","lr"}; int vis[N];
int len[];
char st[N];
int Length;
bool Tag; void init()
{
int i;
for(i=;i<;i++)
len[i] = ;
for(i=;i<;i++)
len[i] = ;
} void dfs(int u)
{
if(u == Length)
Tag = ;
if(Tag)
return;
for(int i=;i<;i++)
{
int flag = ;
if(u+len[i] <= Length && !vis[u+len[i]])
{
for(int j=;j<len[i];j++)
{
if(ss[i][j] != st[u+j])
{
flag = ;
break;
}
}
if(flag)
{
vis[u+len[i]] = ;
dfs(u+len[i]);
}
}
}
} int main()
{
init();
int t,i;
scanf("%d",&t);
while(t--)
{
scanf("%s",st);
Length = strlen(st);
memset(vis,,sizeof(vis));
Tag = ;
dfs();
if(Tag)
puts("YES");
else
puts("NO");
}
return ;
}

解法3:乱搞,模拟。

分成: 单个元素存在与否,与前面匹不匹配,与后面匹不匹配,总共2^3 = 8种情况,然后O(n)扫过去,代码很长。。。

代码:(586ms)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
using namespace std;
#define N 50007 string single[] = {"h","b","c","n","o","f","k","p","s","y","i","w","u","v"};
string ss[] = {"he","li","be","ne","na","mg",
"al","si","cl","ar","ca","sc","ti","cr","mn",
"fe","co","ni","cu","zn","ga","ge","as","se",
"br","kr","rb","sr","zr","nb","mo","tc","ru",
"rh","pd","ag","cd","in","sn","sb","te","xe",
"cs","ba","hf","ta","re","os","ir","pt","au",
"hg","tl","pb","bi","po","at","rn","fr","ra",
"rf","db","sg","bh","hs","mt","ds","rg","cn",
"fl","lv","la","ce","pr","nd","pm","sm","eu",
"gd","tb","dy","ho","er","tm","yb","lu","ac",
"th","pa","np","pu","am","cm","bk","cf","es",
"fm","md","no","lr"}; char st[N];
int vis[N]; int main()
{
int t,len,i,j,k;
scanf("%d",&t);
while(t--)
{
scanf("%s",st);
len = strlen(st);
int flag = ;
memset(vis,,sizeof(vis));
for(i=;i<len;i++)
{
if(vis[i])
continue;
string S = "";
S += st[i];
for(j=;j<;j++)
{
if(single[j] == S)
break;
}
if(j == ) //not single
{
if(i > && !vis[i-])
{
S = st[i-]+S;
for(j=;j<;j++)
{
if(ss[j] == S)
break;
}
if(j != ) //pre match
{
if(i < len-)
{
string ks = "";
ks += st[i];
ks += st[i+];
for(k=;k<;k++)
{
if(ss[k] == ks)
break;
}
if(k != ) //back match
vis[i] = ;
else //back not match
vis[i] = ;
}
}
else //pre not match
{
if(i < len-)
{
string ks = "";
ks += st[i];
ks += st[i+];
for(k=;k<;k++)
{
if(ss[k] == ks)
break;
}
if(k != ) //back match
vis[i+] = ;
else //back not match
{
flag = ;
break;
}
}
else
{
flag = ;
break;
}
}
}
else
{
if(i < len-)
{
string ks = "";
ks += st[i];
ks += st[i+];
for(k=;k<;k++)
{
if(ss[k] == ks)
break;
}
if(k != ) //back match
vis[i+] = ;
else //back not match
{
flag = ;
break;
}
}
else
{
flag = ;
break;
}
}
}
else //single
{
if(i > && !vis[i-])
{
S = st[i-]+S;
for(j=;j<;j++)
{
if(ss[j] == S)
break;
}
if(j != ) //pre match
{
if(i < len-)
{
string ks = "";
ks += st[i];
ks += st[i+];
for(k=;k<;k++)
{
if(ss[k] == ks)
break;
}
if(k != ) //back match
vis[i] = ;
else //back not match
vis[i] = ;
}
}
else //pre not match
{
if(i < len-)
{
string ks = "";
ks += st[i];
ks += st[i+];
for(k=;k<;k++)
{
if(ss[k] == ks)
break;
}
if(k != ) //back match
vis[i] = ;
else //back not match
vis[i] = ;
}
else
vis[i] = ;
}
}
else
{
if(i < len-)
{
string ks = "";
ks += st[i];
ks += st[i+];
for(k=;k<;k++)
{
if(ss[k] == ks)
break;
}
if(k != ) //back match
vis[i] = ;
else //back not match
vis[i] = ;
}
else
vis[i] = ;
}
}
}
if(flag)
puts("YES");
else
puts("NO");
}
return ;
}

UVALive 6257 Chemist's vows --一道题的三种解法(模拟,DFS,DP)的更多相关文章

  1. UVALive 6257 Chemist's vows

    #include<iostream> #include<string.h> #include<stdio.h> #include<ctype.h> #i ...

  2. UVAlive 7414 Squeeze the Cylinders a,b,c三种步数 搜索+最短路

    题意:给你n个点(n<=50),然后有些点之间会有一条路,路是单向的,每个回合让你走a,b,c三种步数中的任意一种(a,b,c<=100),问你最少需要多少个回合才能保证一定能从1点到达n ...

  3. UVALive 3486/zoj 2615 Cells(栈模拟dfs)

    这道题在LA是挂掉了,不过还好,zoj上也有这道题. 题意:好大一颗树,询问父子关系..考虑最坏的情况,30w层,2000w个点,询问100w次,貌似连dfs一遍都会TLE. 安心啦,这肯定是一道正常 ...

  4. 【栈模拟dfs】Cells UVALive - 3486

    题目链接:https://cn.vjudge.net/contest/209473#problem/D 题目大意:有一棵树,这棵树的前n个节点拥有子节点,告诉你n的大小,以及这n个节点各有的子节点个数 ...

  5. 服务器文档下载zip格式 SQL Server SQL分页查询 C#过滤html标签 EF 延时加载与死锁 在JS方法中返回多个值的三种方法(转载) IEnumerable,ICollection,IList接口问题 不吹不擂,你想要的Python面试都在这里了【315+道题】 基于mvc三层架构和ajax技术实现最简单的文件上传 事件管理

    服务器文档下载zip格式   刚好这次项目中遇到了这个东西,就来弄一下,挺简单的,但是前台调用的时候弄错了,浪费了大半天的时间,本人也是菜鸟一枚.开始吧.(MVC的) @using Rattan.Co ...

  6. UVALive - 6257 K - Chemist's vows 【DFS】【BFS】【DP】

    题目链接 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  7. Central Europe Regional Contest 2012 Problem c: Chemist’s vows

    字符串处理的题目: 学习了一下string类的一些用法: 这个代码花的时间很长,其实可以更加优化: 代码: #include<iostream> #include<string> ...

  8. [LeetCode] Find All Numbers Disappeared in an Array 找出数组中所有消失的数字

    Given an array of integers where 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and ot ...

  9. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. 关于领域驱动设计(DDD)仓储的思考

    为什么需要仓储呢?领域对象(一般是聚合根)的被创建出来后的到最后持久化到数据库都需要跟数据库打交道,这样我们就需要一个类似数据库访问层的东西来管理领域对象.那是不是我们就可以设计一个类似DAL层的东东 ...

  2. ajax跨子域请求的两种现代方法

    因为面向互联网的性质,我们公司的大部分系统都采用多子域的方式进行开发和部署,以达到松耦合和分布式的目的,因此子系统间的交互不可避免.虽然通过后台的rpc框架解决了大部分的交互问题,但有些情况下,前端直 ...

  3. FAQ_1_陌生的VERSION.SDK_INT

    看到VERSION.SDK_INT不禁诧异,这是何物?! 看API的定义,如下: 原来是一个常量值.但是这个常量值可以根据系统的不同而不同哟!为了揭开其神秘的面纱,将源码ctrl如下: 可以看出,获取 ...

  4. java微信开发(wechat4j)——wechat4j配置文件解读

    wechat4j的配置文件是wechat4j.properties.需要放置在项目src目录下.在wechat4j.jar中的META-INF下有一个wechat4j.properties.sampl ...

  5. 通过原生js添加div和css

    function createStyle(){ return"*{padding:0;margin:0;border:0}.loading{width:640px;height:1024px ...

  6. osx的终端软件iterm2 之 修改外观 和 常用快捷键小结

    1.修改外观:透明,自己配色,最好还有个透明的小背景,比如这样: 那么你就要这样修改: 2.快捷键小结 (1)⌘ + d 横着分屏 / ⌘ + shift + d 竖着分屏  : 适合多操作的时候 ( ...

  7. 使用Lucene.NET实现简单的站内搜索

    使用Lucene.NET实现简单的站内搜索 导入Lucene.NET 开发包 Lucene 是apache软件基金会一个开放源代码的全文检索引擎工具包,是一个全文检索引擎的架构,提供了完整的查询引擎和 ...

  8. Interoperability between Java and SharePoint 2013 on Premises

    http://ctp-ms.blogspot.com/2012/12/interoperability-between-java-and.html   Introduction One of the ...

  9. ubuntu解决arm-linux-gcc no such file的问题

    这种情况是因为你的操作系统是Ubuntu 64位的,而交叉编译工具链都是32位执行程序.要成功运行这些交叉编译工具链,需要与这些工具链相关的32位库.安装命令如下:sudo apt-get insta ...

  10. android XMl 解析神奇xstream 五: 把复杂对象转换成 xml ,并写入SD卡中的xml文件

    前言:对xstream不理解的请看: android XMl 解析神奇xstream 一: 解析android项目中 asset 文件夹 下的 aa.xml 文件 android XMl 解析神奇xs ...