how to use pytorch

1.Tensor

we can create a tensor just like creating a matrix the default type of a tensor is float

import torch as t
a = t.Tensor([[1,2],[3,4],[5,6]])
a
tensor([[1., 2.],
[3., 4.],
[5., 6.]])

we can also change the datatype of a tensor

b = t.LongTensor([[1,2],[3,4],[5,6]])
b
tensor([[1, 2],
[3, 4],
[5, 6]])

we can also create a tensor filled with zero or random values

c = t.zeros((3,2))
d = t.randn((3,2))
print(c)
print(d)
tensor([[0., 0.],
[0., 0.],
[0., 0.]])
tensor([[ 1.2880, -0.1640],
[-0.2654, 0.7187],
[-0.3156, 0.4489]])

we can change the value in a tensor we've created

a[0,1] = 100
a
tensor([[  1., 100.],
[ 3., 4.],
[ 5., 6.]])

numpy and tensor can transfer from each other

import numpy as np
e = np.array([[1,2],[3,4],[5,6]])
torch_e = t.from_numpy(e)
torch_e
tensor([[1, 2],
[3, 4],
[5, 6]])

2.Variable

Variable consists of data, grad, and grad_fn

data为Tensor中的数值

grad是反向传播梯度

grad_fn是得到该Variable的操作 例如加减乘除

from torch.autograd import Variable
x = Variable(t.Tensor([1]),requires_grad = True)
w = Variable(t.Tensor([2]),requires_grad = True)
b = Variable(t.Tensor([3]),requires_grad = True) y = w*x+b y.backward()
print(x.grad)
print(w.grad)
print(b.grad)
tensor([2.])
tensor([1.])
tensor([1.])

we can also calculate the grad of a matrix

x = t.randn(3)
x = Variable(x,requires_grad=True) y = x*2
print(y) y.backward(t.FloatTensor([1,1,1]))
print(x.grad)
tensor([-2.4801,  0.6291, -0.4250], grad_fn=<MulBackward>)
tensor([2., 2., 2.])

3.dataset

you can define the function len and getitem to write your own dataset

import pandas as pd
from torch.utils.data import Dataset
class myDataset(Dataset):
def __init__(self, csv_file, txt_file, root_dir, other_file):
self.csv_data = pd.read_csv(csv_file)
with open(txt_file, 'r') as f:
data_list = f.readlines()
self.txt_data = data_list
self.root_dir = root_dir def __len__(self):
return len(self.csv_data) def __getitem(self,idx):
data = (self.csv_data[idx],self.txt_data[idx])
return data

4.nn.Module

from torch import nn
class net_name(nn.Module):
def __init(self,other_arguments):
super(net_name, self).__init__() def forward(self,x):
x = self.convl(x)
return x

5.Optim

1.一阶优化算法

常见的是梯度下降法\(\theta = \theta-\eta\times \frac{\partial J(\theta)}{\partial\theta}\)

2.二阶优化算法

Hessian法

Pytorch学习(一)基础语法篇的更多相关文章

  1. Python学习笔记——基础语法篇

    一.Python初识(IDE环境及基本语法,Spyder快捷方式) Python是一种解释型.面向对象.动态数据类型的高级程序设计语言,没有编译过程,可移植,可嵌入,可扩展. IDE 1.检查Pyth ...

  2. Xamarin XAML语言教程基础语法篇大学霸

    Xamarin XAML语言教程基础语法篇大学霸 前  言 Xamarin是一个跨平台开发框架.它可以用来开发iOS.Android.Windows Phone和Mac的应用程序.使用Xamarin框 ...

  3. JavaScript学习02 基础语法

    JavaScript学习02 基础语法 JavaScript中很多基础内容和Java中大体上基本一样,所以不需要再单独重复讲了,包括: 各种算术运算符.比较运算符.逻辑运算符: if else语句.s ...

  4. Scala快速入门 - 基础语法篇

    本篇文章首发于头条号Scala快速入门 - 基础语法篇,欢迎关注我的头条号和微信公众号"大数据技术和人工智能"(微信搜索bigdata_ai_tech)获取更多干货,也欢迎关注我的 ...

  5. 真香,理解记忆法学习Python基础语法

    这篇文章很难写!我最开始学 Python,和大多数人一样,是看的菜鸟教程: 在写完这篇文章的第一遍后,我发现并没有写出新意,很可能读者看到后,会和我当初一样,很快就忘了.我现在已经不是读者而是作者了, ...

  6. JavaScript学习笔记-基础语法、类型、变量

    基础语法.类型.变量   非数字值的判断方法:(因为Infinity和NaN他们不等于任何值,包括自身) 1.用x != x ,当x为NaN时才返回true; 2.用isNaN(x) ,当x为NaN或 ...

  7. less学习:基础语法总结

    一. less是什么 Less 是一门 CSS 预处理语言,它扩充了 CSS 语言,增加了诸如变量.混合(mixin).函数等功能,让 CSS 更易维护.方便制作主题.扩充. 注意1):less使用. ...

  8. Python学习①. 基础语法

    Python 简介 Python 是一种解释型,面向对象的语言.特点是语法简单,可跨平台 Python 基础语法 交互式编程 交互式编程不需要创建脚本文件,是通过 Python 解释器的交互模式进来编 ...

  9. 【Java基础总结】Java基础语法篇(上)

    Java基础语法 思维导图 一.Java语言介绍 1.Java应用平台 JavaSE(Java Platform Standard Edition):开发普通桌面和商务应用程序,是另外两类的基础 Ja ...

随机推荐

  1. java 11 增加了一系列的字符串处理方法,Optional 加强 ,改进的文件API

    增加了一系列的字符串处理方法 如以下所示. // 判断字符串是否为空白 " ".isBlank(); // true // 去除首尾空白 " Javastack &quo ...

  2. Mybatis的应用1 Mybatis和logback的应用配置

    首先新建一个module, 然后,在pom文件里面添加一些引用的项. pom.xml <?xml version="1.0" encoding="UTF-8&quo ...

  3. Eclipse 运行导入的 Java 项目时,Error:A JNI error has occurred

    出现场景 导入 Java 项目,运行时,出现:Error:A JNI error has occurred.... 解决方式 该项目的 Build Path , 在Libraries 中删除后重新添加 ...

  4. vue 自定义marquee无缝滚动组件

    先上效果图: (1) 看起来可能有点卡顿,但是实际上页面上看起来挺顺畅的. (2) 思路就是获取每一个列表的宽度,设置定时器移动列表,当移动的距离达到一个列表的宽度的时候,把这个距离放到数组的最后.这 ...

  5. CMDB资产管理系统开发【day26】:实现资产自动更新

    1.需求分析 1.比对分析 比对的时候以那个数据源为主? old [1,2,3 ] db数据库 new [2,3,4 ] 客户端汇报过来的 当然以客户端汇报过来的数据为主 2.更新分析 不同的表到底拿 ...

  6. 液晶流在齐次 Besov 空间中的正则性准则

    在 [Zhang, Zujin. Regularity criteria for the three dimensional Ericksen–Leslie system in homogeneous ...

  7. 使用 JS 嵌入的方式来加载 Flash 插件,在各浏览器中播放视频

    嵌入插件 使用 object 和 embed 标签 这种方法用到的是 Object 和 Embed 标签,可以看到 object 的很多参数和 embed 里面的很多属性是重复的.浏览器兼容性,有的浏 ...

  8. Emmet(以前的Zencoding)的使用

    Emmet就是以前的Zencoding div.wrapper#wrapper>div.right+div.left*2>span{nimei$}*3 //. 类名 #id >下面 ...

  9. SQL Server - AS

    AS 是给现有的字段名/表名指定一个别名的意思.

  10. ssh-copy-id 拷贝用户秘钥

    生成秘钥 ssh-keygen -t [rsa|dsa] 将会生成密钥文件和私钥文件 id_rsa,id_rsa.pub或id_dsa,id_dsa.pub 将 .pub 文件复制到B机器的 .ssh ...