题目地址:P5304 [GXOI/GZOI2019]旅行者

这里是官方题解

一个图 \(n\) 点 \(m\) 条边,里面有 \(k\) 个特殊点,问这 \(k\) 个点之间两两最短路的最小值是多少?
\(n \leq 10^5, m \leq 5 * 10 ^5\)

假设我们把特殊点分成 \(A,B\) 两个集合,新建 \(s\) 连 \(A\) 集合的所有点,边权 \(0\) ,新建 \(t\) 连接 \(B\) 集合里的所有点,边权 \(0\) ,那么 \(s\) 到 \(t\) 的最短路就是 \(A,B\) 集合点之间的最短路的最小值。

那么对于 \(k\) 个特殊点,我们枚举二进制里的第 \(i\) 位,把二进制第 \(i\) 位是 \(0\) 的点放在 \(A\) , \(1\) 的点放在 \(B\) ,用以上方法跑一个最短路。

然后跑 \(log\ n\) 次最短路之后,所有最短路的最小值就是最终答案。

原理是,假设 \(k\) 个特殊点里最近的是 \(x\) 和 \(y\) ,那么 \(x\) 和 \(y\) 一定有一个二进制位不一样,那么他们肯定在那次分组的时候被放进了不同的集合,从而肯定被算进了最后的答案之中最短路。

#include <bits/stdc++.h>

const int MAXN = 100010, MAXM = 700010;

struct Edge {
    int y, z;
    Edge *next;
}*a[MAXN], POOL[MAXM], *ptr, *back[MAXN];

void AddEdge(int x, int y, int z) {
    Edge *tmp = ptr++;
    tmp->y = y;
    tmp->z = z;
    tmp->next = a[x];
    a[x] = tmp;
}

int n, nodes[MAXN], k, s, t;
long long dis[MAXN];

long long dijkstra() {
    memset(dis, 0x3f, sizeof(dis));
    dis[s] = 0;
    std::priority_queue<std::pair<long long, int> > Q;
    Q.push(std::make_pair(0, s));
    for (int i = 1; i < n + 2; i++) {
        while (!Q.empty() && dis[Q.top().second] != -Q.top().first) Q.pop();
        if (Q.empty()) break;
        int now = Q.top().second;
        Q.pop();
        for (Edge *p = a[now]; p; p = p->next)
            if (dis[p->y] > dis[now] + p->z)
                Q.push(std::make_pair(-(dis[p->y] = dis[now] + p->z), p->y));
    }
    return dis[t];
}

int main(int argc, char* argv[]) {
    int T;
    scanf("%d", &T);
    while (T--) {
        ptr = POOL;
        memset(a, 0, sizeof a);
        int m;
        scanf("%d%d%d", &n, &m, &k);
        while (m--) {
            int x, y, z;
            scanf("%d%d%d", &x, &y, &z);
            AddEdge(x, y, z);
        }
        for (int i = 1; i <= k; i++) scanf("%d", nodes + i);

        long long Ans = ~0ull>>1;
        s = n + 1, t = n + 2;
        for (int i = 0; (1 << i) <= k; i++) {
            Edge *backup = ptr;
            memcpy(back, a, (sizeof a[0]) * (n + 3));
            for (int j = 1; j <= k; j++) if (j & (1 << i)) {
                    AddEdge(s, nodes[j], 0);
                } else {
                    AddEdge(nodes[j], t, 0);
                }
            Ans = std::min(Ans, dijkstra());
            ptr = backup;
            memcpy(a, back, (sizeof a[0]) * (n + 3));
            for (int j = 1; j <= k; j++) if (j & (1 << i)) {
                    AddEdge(nodes[j], t, 0);
                } else {
                    AddEdge(s, nodes[j], 0);
                }
            Ans = std::min(Ans, dijkstra());
            ptr = backup;
            memcpy(a, back, (sizeof a[0]) * (n + 3));
        }
        printf("%lld\n", Ans);
    }
    return 0;
}

P5304 [GXOI/GZOI2019]旅行者的更多相关文章

  1. 洛谷 P5304 [GXOI/GZOI2019]旅行者(最短路)

    洛谷:传送门 bzoj:传送门 参考资料: [1]:https://xht37.blog.luogu.org/p5304-gxoigzoi2019-lv-xing-zhe [2]:http://www ...

  2. luogu P5304 [GXOI/GZOI2019]旅行者

    传送门 所以这个\(5s\)是SMG 暴力是枚举每一个点跑最短路,然后有一个很拿衣服幼稚的想法,就是把所有给出的关键点当出发点,都丢到队列里,求最短路的时候如果当前点\(x\)某个相邻的点\(y\)是 ...

  3. P5304 [GXOI/GZOI2019]旅行者(最短路/乱搞)

    luogu bzoj Orz自己想出神仙正解的sxy 描述略 直接把所有起点推进去跑dijkstra... 并且染色,就是记录到这个点的最短路是由哪个起点引导出来的 然后再把所有边反指跑一次... 之 ...

  4. 【题解】Luogu P5304 [GXOI/GZOI2019]旅行者

    原题传送门 题意:给你k个点,让你求两两最短路之间的最小值 我们考虑二进制拆分,使得每两个点都有机会分在不同的组\((A:0,B:1)\)中,从源点\(S\)向\(A/B\)中的点连边权为0的边,从\ ...

  5. [洛谷P5304][GXOI/GZOI2019]旅行者

    题目大意: 有一张 \(n(n\leqslant10^5)\) 个点 \(m(m\leqslant5\times10^5)\) 条边的有向有正权图,有$k(2\leqslant k\leqslant ...

  6. [LOJ3087][GXOI/GZOI2019]旅行者——堆优化dijkstra

    题目链接: [GXOI/GZOI2019]旅行者 我们考虑每条边的贡献,对每个点求出能到达它的最近的感兴趣的城市(设为$f[i]$,最短距离设为$a[i]$)和它能到达的离它最近的感兴趣的城市(设为$ ...

  7. 【BZOJ5506】[GXOI/GZOI2019]旅行者(最短路)

    [BZOJ5506][GXOI/GZOI2019]旅行者(最短路) 题面 BZOJ 洛谷 题解 正着做一遍\(dij\)求出最短路径以及从谁转移过来的,反过来做一遍,如果两个点不由同一个点转移过来就更 ...

  8. 洛谷 P 5 3 0 4 [GXOI/GZOI2019]旅行者

    题目描述 J 国有 n 座城市,这些城市之间通过 m 条单向道路相连,已知每条道路的长度. 一次,居住在 J 国的 Rainbow 邀请 Vani 来作客.不过,作为一名资深的旅行者,Vani 只对 ...

  9. BZOJ5506 GXOI/GZOI2019旅行者(最短路)

    本以为是个二进制分组傻逼题https://www.cnblogs.com/Gloid/p/9545753.html,实际上有神仙的一个log做法https://www.cnblogs.com/asul ...

随机推荐

  1. laravel 预加载特定的列

    /**订单列表 0 已删除 1执行中 2 已过期 * * @param Request $request * * @return \Illuminate\Contracts\View\Factory| ...

  2. g.DrawImage图片合成在本机可以,在服务器一直报内存不够

    g.DrawImage图片合成在本机可以,在服务器一直报内存不够,发现是这个要设为false

  3. [数据库] windows server 2003下mysql出现10048错误的解决办法 Can't connect to MySQL server on '127.0.0.1' (10048)(抄)

    网站访问量大了的时候mysql连接数自然就多了,当超出mysql最大连接数的时候就会出现错误,当出现too many字样的错误的时候一般是因为连接数的问题,只需要修改最大连接数max_conectio ...

  4. Oracle 12c CDB PDB 安装/配置/管理

    Oracle安装参考:https://www.cnblogs.com/zhichaoma/p/9288739.html 对于CDB,启动和关闭与之前传统的方式一样,具体语法如下:     STARTU ...

  5. java网页爬数据获取class中的空格

    <ul class=""> <li class="avatar_img"><img src="http://avatar ...

  6. Mergeable Stack ZOJ - 4016(list)

    ZOJ - 4016 vector又T又M list是以链表的方式存储的 是一个双向链表 元素转移操作中,不能一个个遍历加入到s中,list独有的splic函数可以在常数时间内实现合并(并删除源lis ...

  7. did not finish being created even after we waited 189 seconds or 61 attempts. And its status is downloading

    did not finish being created even after we waited 189 seconds or 61 attempts. And its status is down ...

  8. MATLAB-离散系统的数字PID控制仿真

    %PID Controller clear all; close all; ts=0.001; %采样时间=0.001s  sys=tf(,]); %建立被控对象传递函数 dsys=c2d(sys,t ...

  9. css:a:visited限制

    :active 对于:active伪类可以在div上生效.没有限制 :visited使用限制 :visited只适用于带href的a标签.如果给a标签绑定了click事件,那跳转的url必须跟href ...

  10. BZOJ bzoj1396 识别子串

    题面: bzoj1396 题解: 先建出SAM,并计算right集合大小.显然符合条件的点的right集合大小为1. 对于每个right集合为1的状态显然可以算出这些状态的pos以及maxlen和mi ...