液晶流在齐次 Besov 空间中的正则性准则
在 [Zhang, Zujin. Regularity criteria for the three dimensional Ericksen–Leslie system in homogeneous Besov spaces. Comput. Math. Appl. 75 (2018), no. 3, 1060--1065] 中, 我们讨论了 $$\bee\label{EL:Simple} \seddm{ \p_t\bbu +(\bbu\cdot\n)\bbu -\lap\bbu+\n P =-\n\cdot[\n\bbd \odot\n\bbd],\\ \p_t\bbd+(\bbu\cdot\n)\bbd =\lap \bbd -\bbf(\bbd),\\ \Div\bbu=0,\\ (\bbu,\bbd)|_{t=0}=(\bbu_0,\bbd_0), } \eee$$ 说明如果 $$\bee\label{thm:EL:Simple:reg} \bbu\in L^\frac{2}{1+r}(0,T;\dot B^r_{\infty,\infty}(\bbR^3)),\quad 0<r<1, \eee$$ 则解光滑. 也讨论了 $$\bee\label{EL:d=1} \seddm{ \p_t\bbu +(\bbu\cdot\n)\bbu -\lap \bbu +\n P=-\n\cdot (\n\bbd\odot\n\bbd),\\ \p_t\bbd+(\bbu\cdot\n)\bbd =\lap\bbd+|\n\bbd|^2\bbd,\\ \Div\bbu=0,\quad |\bbd|=1,\\ (\bbu,\bbd_0)|_{t=0}=(\bbu_0,\bbd_0). } \eee$$ 说明如果 $$\bee\label{thm:EL:Simple:d=1:reg} \bbu\in L^\frac{2}{1+r}(0,T;\dot B^r_{\infty,\infty}(\bbR^3)),\quad \n\bbd\in L^\frac{2}{1+s}(0,T;\dot B^s_{\infty,\infty}(\bbR^3)),\quad -1<r,s<1, \eee$$ 则解光滑. 最后讨论了一般的 Ericksen-Leslie 系统 $$\bee\label{EL} \seddm{ \p_t\bbu +(\bbu\cdot\n)\bbu -\lap\bbu +\n P =-\Div \sez{(\n \bbd)^t \cfrac{\p W(\bbd,\n\bbd)}{\p (\n\bbd)}},\\ \p_t\bbd +(\bbu\cdot\n)\bbd =\bbh-(\bbd\cdot \bbh)\bbd,\\ \Div\bbu=0,\quad |\bbd|=1,\\ (\bbu,\bbd)|_{t=0}=(\bbu_0,\bbd_0), } \eee$$ 说明如果 $$\bee\label{thm:EL:reg} \bbu\in L^\frac{2}{1+r}(0,T;\dot B^r_{\infty,\infty}(\bbR^3)),\quad \n\bbd\in L^\frac{2}{1+s}(0,T;\dot B^s_{\infty,\infty}(\bbR^3)),\quad -1<r,s<1, \eee$$ 则解光滑.
链接: https://pan.baidu.com/s/1raiKJeO 密码: eqfb
液晶流在齐次 Besov 空间中的正则性准则的更多相关文章
- QGE 在齐次 Besov 空间中的准则
在 [Zhang, Zujin. On the blow-up criterion for the quasi-geostrophic equations in homogeneous Besov s ...
- 解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程 昨天开发人员跟我说,执行一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅 ...
- Computer Science Theory for the Information Age-3: 高维空间中的高斯分布和随机投影
高维空间中的高斯分布和随机投影 (一)在高维球体表面产生均匀分布点的方法 我们来考虑一个采样问题,就是怎样在高维单位球体的表面上均匀的采样.首先,考虑二维的情况,就是在球形的周长上采样.我们考虑如下方 ...
- Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds
高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...
- Computer Science Theory for the Information Age-1: 高维空间中的球体
高维空间中的球体 注:此系列随笔是我在阅读图灵奖获得者John Hopcroft的最新书籍<Computer Science Theory for the Information Age> ...
- 2D和3D空间中计算两点之间的距离
自己在做游戏的忘记了Unity帮我们提供计算两点之间的距离,在百度搜索了下. 原来有一个公式自己就写了一个方法O(∩_∩)O~,到僵尸到达某一个点之后就向另一个奔跑过去 /// <summary ...
- Confluence 6 空间中的常用宏
小组空间(Team Spaces): 介绍小组:User Profile Macro 将会对 Confluence 的用户显示属性的简单摘要,属性照片,联系方式. 在你小组中分享通知和新闻:The B ...
- Confluence 6 内容在空间中是如何组织的
你可以将空间考虑为一个容器,在这个容器中保持了有关你项目中所有重要的东西,包括小组,项目或者项目相关的工作.这些东西有很高的自主性,这表示的是每个空间都有自己的的页面,文件,评论以及 RSS 新闻源. ...
- WebGL和ThreeJs学习6--射线法确定3D空间中所选物体
一.在 threejs 中如何确定下图3D空间中鼠标点击位置的 object 对象? 二.射线法确定步骤及代码 //Three.js提供一个射线类Raycaster来拾取场景里面的物体.更方便的使用鼠 ...
随机推荐
- springmvc中的类型转换器
在使用springmvc时可能使用@RequestParam注解或者@RequestBody注解,他们的作用是把请求体中的参数取出来,给方法的参数绑定值. 假如方法的参数是自定义类型,就要用到类型转换 ...
- html5 contenteditable 实现table可编辑(网页版EXCEL)
一直想找一个免费的网页版的EXCEL插件,以便于多人共同在线编辑,始终没发现合适的. 其实自己实现类似功能也不难.参考:https://blog.csdn.net/chadcao/article/de ...
- 《JAVA程序设计》_第四周学习总结
一.本周学习内容 1.子类与父类--5.1知识 在类的声明中用关键字extends来定义一个类的子类,格式如下: class 子类名 extends 父类名 { ... } 2.子类的继承性--5.2 ...
- 文本分类实战(三)—— charCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- ✔ OI Diary ★
一 | 2019-3-28 1.整晨,云之考矣,暴后皆不会,邃无感而写斯普雷尔,然则午后知暴可六十哉. 然则斯普雷毙,虽特判之矣,然则暴只判二十哉,呜呼! 2.午间归宿,视白购书一本,目触,感之甚集 ...
- Java集合之Map和Set源码分析
以前就知道Set和Map是java中的两种集合,Set代表集合元素无序.不可重复的集合:Map是代表一种由多个key-value对组成的集合.然后两个集合分别有增删改查的方法.然后就迷迷糊糊地用着.突 ...
- PHP利用MySQL保存session
实现环境: PHP 5.4.24 MySQL 5.6.19 OS X 10.9.4/Apache 2.2.26 一.代码 CREATE TABLE `session` ( `skey` ) CHARA ...
- mybatis 配置文件全解
目录 properties settings typeAliases mappers properties mybatis配置文件中,可以像代码一样定义变量,然后在配置文件的其他地方使用,比如数据库连 ...
- System.Diagnostics.Process 测试案例
1.System.Diagnostics.Process 执行exe文件 创建项目,编译成功后,然后把要运行的exe文件拷贝到该项目的运行工作目录下即可,代码如下: using System; usi ...
- Django(一) 安装使用基础
大纲 安装Django 1.创建Django工程 2.创建Django app 3.写一个简单的登录注册相应页面 4.获取用户请求信息并处理 5.前后端交互 6.Django 请求 生命周期 跳转到 ...