液晶流在齐次 Besov 空间中的正则性准则
在 [Zhang, Zujin. Regularity criteria for the three dimensional Ericksen–Leslie system in homogeneous Besov spaces. Comput. Math. Appl. 75 (2018), no. 3, 1060--1065] 中, 我们讨论了 $$\bee\label{EL:Simple} \seddm{ \p_t\bbu +(\bbu\cdot\n)\bbu -\lap\bbu+\n P =-\n\cdot[\n\bbd \odot\n\bbd],\\ \p_t\bbd+(\bbu\cdot\n)\bbd =\lap \bbd -\bbf(\bbd),\\ \Div\bbu=0,\\ (\bbu,\bbd)|_{t=0}=(\bbu_0,\bbd_0), } \eee$$ 说明如果 $$\bee\label{thm:EL:Simple:reg} \bbu\in L^\frac{2}{1+r}(0,T;\dot B^r_{\infty,\infty}(\bbR^3)),\quad 0<r<1, \eee$$ 则解光滑. 也讨论了 $$\bee\label{EL:d=1} \seddm{ \p_t\bbu +(\bbu\cdot\n)\bbu -\lap \bbu +\n P=-\n\cdot (\n\bbd\odot\n\bbd),\\ \p_t\bbd+(\bbu\cdot\n)\bbd =\lap\bbd+|\n\bbd|^2\bbd,\\ \Div\bbu=0,\quad |\bbd|=1,\\ (\bbu,\bbd_0)|_{t=0}=(\bbu_0,\bbd_0). } \eee$$ 说明如果 $$\bee\label{thm:EL:Simple:d=1:reg} \bbu\in L^\frac{2}{1+r}(0,T;\dot B^r_{\infty,\infty}(\bbR^3)),\quad \n\bbd\in L^\frac{2}{1+s}(0,T;\dot B^s_{\infty,\infty}(\bbR^3)),\quad -1<r,s<1, \eee$$ 则解光滑. 最后讨论了一般的 Ericksen-Leslie 系统 $$\bee\label{EL} \seddm{ \p_t\bbu +(\bbu\cdot\n)\bbu -\lap\bbu +\n P =-\Div \sez{(\n \bbd)^t \cfrac{\p W(\bbd,\n\bbd)}{\p (\n\bbd)}},\\ \p_t\bbd +(\bbu\cdot\n)\bbd =\bbh-(\bbd\cdot \bbh)\bbd,\\ \Div\bbu=0,\quad |\bbd|=1,\\ (\bbu,\bbd)|_{t=0}=(\bbu_0,\bbd_0), } \eee$$ 说明如果 $$\bee\label{thm:EL:reg} \bbu\in L^\frac{2}{1+r}(0,T;\dot B^r_{\infty,\infty}(\bbR^3)),\quad \n\bbd\in L^\frac{2}{1+s}(0,T;\dot B^s_{\infty,\infty}(\bbR^3)),\quad -1<r,s<1, \eee$$ 则解光滑.
链接: https://pan.baidu.com/s/1raiKJeO 密码: eqfb
液晶流在齐次 Besov 空间中的正则性准则的更多相关文章
- QGE 在齐次 Besov 空间中的准则
在 [Zhang, Zujin. On the blow-up criterion for the quasi-geostrophic equations in homogeneous Besov s ...
- 解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程 昨天开发人员跟我说,执行一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅 ...
- Computer Science Theory for the Information Age-3: 高维空间中的高斯分布和随机投影
高维空间中的高斯分布和随机投影 (一)在高维球体表面产生均匀分布点的方法 我们来考虑一个采样问题,就是怎样在高维单位球体的表面上均匀的采样.首先,考虑二维的情况,就是在球形的周长上采样.我们考虑如下方 ...
- Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds
高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...
- Computer Science Theory for the Information Age-1: 高维空间中的球体
高维空间中的球体 注:此系列随笔是我在阅读图灵奖获得者John Hopcroft的最新书籍<Computer Science Theory for the Information Age> ...
- 2D和3D空间中计算两点之间的距离
自己在做游戏的忘记了Unity帮我们提供计算两点之间的距离,在百度搜索了下. 原来有一个公式自己就写了一个方法O(∩_∩)O~,到僵尸到达某一个点之后就向另一个奔跑过去 /// <summary ...
- Confluence 6 空间中的常用宏
小组空间(Team Spaces): 介绍小组:User Profile Macro 将会对 Confluence 的用户显示属性的简单摘要,属性照片,联系方式. 在你小组中分享通知和新闻:The B ...
- Confluence 6 内容在空间中是如何组织的
你可以将空间考虑为一个容器,在这个容器中保持了有关你项目中所有重要的东西,包括小组,项目或者项目相关的工作.这些东西有很高的自主性,这表示的是每个空间都有自己的的页面,文件,评论以及 RSS 新闻源. ...
- WebGL和ThreeJs学习6--射线法确定3D空间中所选物体
一.在 threejs 中如何确定下图3D空间中鼠标点击位置的 object 对象? 二.射线法确定步骤及代码 //Three.js提供一个射线类Raycaster来拾取场景里面的物体.更方便的使用鼠 ...
随机推荐
- java 非访问修饰符 final 的用法
final 修饰符,用来修饰类.方法和变量 final修饰的类不能被继承 举例,String类是final类,不可以被继承: final修饰的方法不能被重写 只是不能重写,也就是不能被子类修改,但是可 ...
- python接口自动化-post请求1
一.查看官方文档 1. 学习一个新的模块,直接用 help 函数就能查看相关注释或案例内容,例如 具体信息如下,可查看 python 发送 ge t和 post 请求的案例: F:\test-req- ...
- Linux运维期中架构(50台集群)
一.期中架构 二.期中架构-前端部分 三.第三阶段作业-期中架构
- JRE与JDK简介
如何进行 Java 开发: JRE: JDK:
- mac 版 Pycharm 激活
mac 版 Pycharm 激活 获取注册码地址: http://idea.lanyus.com 输入注册码之后可能会报 this license XXXXXXXX has been cancel ...
- 洛谷 P1101 单词方阵
题目链接 https://www.luogu.org/problemnew/show/P1101 题目描述 给一n×n的字母方阵,内可能蕴含多个"yizhong"单词.单词在方阵中 ...
- .NET IL实现对象深拷贝
对于深拷贝,通常的方法是将对象进行序列化,然后再反序化成为另一个对象.例如在stackoverflow上有这样的解决办法:https://stackoverflow.com/questions/785 ...
- Vultr CentOS 7 安装 Docker
前言 最近在梳理公司的架构,想用 VPS 先做一些测试,然后就开始踩坑了!我用 Vultr 新买了个 VPS. 安装的 CentOS 版本: [root@dbn-seattle ~]# cat /et ...
- sigsuspend()阻塞:异步信号SIGIO为什么会被截胡?
关键词:fcntl.fasync.signal.sigsuspend.pthread_sigmask.trace events. 此文主要是解决问题过程中的记录,内容有较多冗余.但也反映解决问题中用到 ...
- matplotlib绘图的基本操作
转自:Laumians博客园 更简明易懂看Matplotlib Python 画图教程 (莫烦Python)_演讲•公开课_科技_bilibili_哔哩哔哩 https://www.bilibili. ...