题目描述

从前一个和谐的班级,所有人都是搞OI的。有 nn 个是男生,有 00 个是女生。男生编号分别为 1,…,n1,…,n。

现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽。每个人至多属于一个小组。

有若干个这样的条件:第 vv 个男生和第 uu 个男生愿意组成小组。

请问这个班级里最多产生多少个小组?

输入格式

第一行两个正整数,n,mn,m。保证 n≥2n≥2。

接下来 mm 行,每行两个整数 v,uv,u 表示第 vv 个男生和第 uu 个男生愿意组成小组。保证 1≤v,u≤n1≤v,u≤n,保证 v≠uv≠u,保证同一个条件不会出现两次。

输出格式

第一行一个整数,表示最多产生多少个小组。

接下来一行 nn 个整数,描述一组最优方案。第 vv 个整数表示 vv 号男生所在小组的另一个男生的编号。如果 vv 号男生没有小组请输出 00。

样例一

input

10 20
9 2
7 6
10 8
3 9
1 10
7 1
10 9
8 6
8 2
8 1
3 1
7 5
4 7
5 9
7 8
10 4
9 1
4 8
6 3
2 5

output

5
9 5 6 10 2 3 8 7 1 4

样例二

input

5 4
1 5
4 2
2 1
4 3

output

2
2 1 4 3 0

正解:带花树算法

解题报告:

  这道题是一般图最大匹配,也就是带花树算法裸题。

  大概讲一下一般图最大匹配的思想:一般图最大匹配由带花树算法实现,2015年国家集训队论文中我校学长陈胤伯详细介绍了这一算法。

  考虑一般图与二分图最大的不同就在于一般图存在奇环,所以我们不能完全套用二分图最大匹配的算法。

  在这里不加以证明的给出具体做法(证明详见2015年国家队论文):

  每次从一个未盖点出发,将其命名为偶点(偶点匹配的点称之为奇点),枚举其出边以及出边连接的点v:

  如果v在本次BFS中还未被经过,则假设未匹配,那么找到了一条增广路,原路返回,把原来的匹配边和非匹配边取反,这样可以使答案加一;否则,将v的匹配点加入队列中拓展,根据我们上面的定义,v的匹配点显然也是偶点。

  如果v已经访问过,那么显然出现了环,这个环如果是偶环则不用考虑,如果是奇环且本身两个点就不处在同一个现有已经处理过的奇环中,我们就需要将其缩为一个点(或者说是一朵花),并且把上面的奇点全都标记为偶点,丢到队列里面拓展。

  这就是带花树的完整做法。不理解的可以结合我的代码理解一下。我就是看别人代码看懂的......

  代码如下:

//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAXN = 520;
const int MAXM = 250011;
const int MAXL = 10011;
int n,m,ecnt,first[MAXN],next[MAXM],to[MAXM],father[MAXN],Tim;
int dui[MAXL],head,tail,id[MAXN],pre[MAXN],match[MAXN],ans,vis[MAXN];
inline int find(int x){ if(father[x]!=x) father[x]=find(father[x]); return father[x]; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline int lca(int x,int y){
Tim++;
while(vis[x]!=Tim) {
if(x) {
x=find(x);
if(vis[x]==Tim) return x;
vis[x]=Tim;
if(match[x]!=0) x=find(pre[match[x]]);
else x=0;
}
swap(x,y);
}
return x;
} inline void change(int x,int y,int k){//把奇环上的点缩成一个点,并且把原来是奇点的点变成偶点,加入队列
while(find(x)!=k) {
pre[x]=y; int z=match[x];
if(id[z]==1) { id[z]=0; dui[++tail]=z; }
if(find(z)==z) father[z]=k;
if(find(x)==x) father[x]=k;
y=z; x=pre[y];
}
} inline bool bfs(int ini){
for(int i=1;i<=n;i++) id[i]=-1,father[i]=i;
head=tail=0; dui[++tail]=ini; id[ini]=0; int u;
while(head<tail) {
u=dui[++head];
for(int i=first[u];i;i=next[i]) {
int v=to[i];
if(id[v]==-1) {
pre[v]=u; id[v]=1;
if(!match[v]) {
int last,t,now=v;
while(now!=0) {
t=pre[now]; last=match[t];
match[t]=now; match[now]=t;
now=last;
}
return true;
}
id[match[v]]=0; dui[++tail]=match[v];
}
else if(id[v]==0&&find(u)!=find(v)){ //出现奇环且不是在同一个环中
int g=lca(u,v);
change(u,v,g);
change(v,u,g);
}
}
}
return false;
} inline void work(){
n=getint(); m=getint(); int x,y;
for(int i=1;i<=m;i++) {
x=getint(); y=getint();
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y;
next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x;
}
for(int i=1;i<=n;i++) if(!match[i]&&bfs(i)) ans++;
printf("%d\n",ans);
for(int i=1;i<=n;i++) printf("%d ",match[i]);
} int main()
{
work();
return 0;
}

  

  

UOJ79 一般图最大匹配的更多相关文章

  1. 【题解】Uoj79一般图最大匹配

    带花树裸题,感觉带花树强强……不会的勿看此文,解释的可能不对,只是给自己看的!!!如题,带花树即为求一般图最大匹配算法(匈牙利与dinic为二分图最大匹配).推荐论文:2015年<浅谈图的匹配算 ...

  2. [转]带花树,Edmonds's matching algorithm,一般图最大匹配

    看了两篇博客,觉得写得不错,便收藏之.. 首先是第一篇,转自某Final牛 带花树……其实这个算法很容易理解,但是实现起来非常奇葩(至少对我而言). 除了wiki和amber的程序我找到的资料看着都不 ...

  3. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  4. 【Learning】带花树——一般图最大匹配

    一般图最大匹配--带花树 问题 ​ 给定一个图,求该图的最大匹配.即找到最多的边,使得每个点至多属于一条边. ​ 这个问题的退化版本就是二分图最大匹配. ​ 由于二分图中不存在奇环,偶环对最大匹配并无 ...

  5. HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】

    <题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...

  6. 【UOJ#79】一般图最大匹配(带花树)

    [UOJ#79]一般图最大匹配(带花树) 题面 UOJ 题解 带花树模板题 关于带花树的详细内容 #include<iostream> #include<cstdio> #in ...

  7. ZOJ 3316 Game 一般图最大匹配带花树

    一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...

  8. [一般图最大匹配]Bimatching

    10566 Bimatching 题意:一个男生必须跟两个女生匹配,求最大匹配 思路:一般的二分图匹配做不了,网络流也不会建图,这题采用的是一般图匹配 首先在原来二分图的基础上,将一个男生拆成两个点 ...

  9. [WC2016]挑战NPC(一般图最大匹配)

    [WC2016]挑战NPC(一般图最大匹配) Luogu 题解时间 思路十分有趣. 考虑一个筐只有不多于一个球才有1的贡献代表什么. 很明显等效于有至少两个位置没有被匹配时有1的贡献. 进而可以构造如 ...

随机推荐

  1. java面试题——HashMap和Hashtable 的区别

    一.HashMap 和Hashtable 的区别 我们先看2个类的定义 public class Hashtable extends Dictionary implements Map, Clonea ...

  2. PHP跨域form提交

    因为安全性因素,直接跨域访问是不被允许的. 1.PHP CURL方式 function curlPost($url,$params) { $postData = ''; foreach($params ...

  3. js数组转换问题

    一维数组转多维数组 var arr=[1,2,3,4,5,6,7,8,9,10]; function splitArray(arr,size){ var result = []; var tempAr ...

  4. 靠谱的datatable转json方法

    今天有之前同事问我要datatable转json的方法,以前自己也弄过,但感觉网上有很多不靠谱的方法.所以自己在博客里记录一个,当然也是网上找的,但是这个靠谱一点,起码可以用不会报错,所以叫他靠谱的d ...

  5. Xcode 8 日志输出乱码问题

    更新到Xcode 8的同学应该都遇到了这个问题:用Xcode 8运行项目,日志会疯狂的刷,就像下面这种图一样:

  6. SVN使用_获取某版本后改动的文件列表

    本章将讲解如何通过svn命令获取某版本后改动的所有文件 一键操作,告别svn log的繁杂对比工作. 1:安装SVN命令行工具Subversion(不是TortoiseSVN) 下载Subversio ...

  7. AngularJS 系列 02 - 模块

    引导目录: AngularJS 系列 学习笔记 目录篇 前言: 其实,在上篇文章介绍数据绑定的时候,我们的HelloWorld的代码案例中就已经使用了模块(module).哈哈. 本篇就着重介绍一下a ...

  8. Unsupported major.minor version 51.0错误

    错误原因:用jdk7编译的class文件放到基于jdk6运行在tomcat之中,就会报这个错 解决方法:项目------>右键------>属性------>Java Compile ...

  9. Storm UI 说明

    原文: http://blog.sina.com.cn/s/blog_5c51172c0102v26g.html

  10. 常用MySQL图形化管理工具

    MySQL的管理维护工具非常多,除了系统自带的命令行管理工具之外,还有许多其他的图形化管理工具,这里我介绍几个经常使用的MySQL图形化管理工具,供大家参考. MySQL是一个非常流行的小型关系型数据 ...