tensorflow+ssd_mobilenet实现目标检测的训练
本文在Ubuntu下使用tensorflow的object detection API来训练自己的数据集。所用模型为ssd_mobilenet,也可以使用其他的模型。当然也可以在windows下训练,代码上没有多大差别,主要是配置环境那里,比较麻烦(windows和linux下都一样麻烦)。
一、配置环境
1. 在GitHub上下载所需的models文件,地址:https://github.com/tensorflow/models。
2. 安装pillow、lxml。Jupyter Notebook和matplotlib这两个我就不说了,肯定早就装好了。
pip install pillow
pip install lxml
3. 编译protobuf,object detection API是使用protobuf来训练模型和配置参数,所以得先编译protobuf,下载地址:https://github.com/google/protobuf/releases
windows的配置参考:https://blog.csdn.net/dy_guox/article/details/79081499
Ubuntu下的配置为:
下载地址 https://github.com/google/protobuf/releases
下载protobuf-all-3.7.0.tar.gz
命令如下:
tar zxvf protobuf-all-3.7.0.tar.gz
cd protobuf-3.7.0/
./autogen.sh
./configure --prefix=/usr/local/protobuf
make
make check 出现错误,不过没事
修改配置文件
(1)vim /etc/profile,添加
export PATH=$PATH:/usr/local/protobuf/bin/
export PKG_CONFIG_PATH=/usr/local/protobuf/lib/pkgconfig/
保存执行source /etc/profile
vim ~/.profile,添加
export PATH=$PATH:/usr/local/protobuf/bin/
export PKG_CONFIG_PATH=/usr/local/protobuf/lib/pkgconfig/ 否则会出现登陆用户找不到protoc命令
(2)配置动态链接库
vim /etc/ld.so.conf 在新的一行添加
/usr/local/protobuf/lib
执行命令 sudo ldconfig
安装完成
执行protoc --version,会出现当前libporoto的版本信息
libprotoc 2.6.1
二、在Ubuntu内先制作好自己的VOC数据集。制作过程如下:
在Ubuntu内制作自己的VOC数据集
三、将样本数据转换为TFRecord格式
1. 新建 train_test_split.py 把xml文件数据集分为了train、test、validation三部分,并存储在Annotations文件夹中,训练验证集占80%,测试集占20%。训练集占训练验证集的80%。代码如下:
import os
import random
import time
import shutil xmlfilepath=r'./Annotations'
saveBasePath=r"./Annotations" trainval_percent=0.8
train_percent=0.8
total_xml = os.listdir(xmlfilepath)
num=len(total_xml)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr)
print("train and val size",tv)
print("train size",tr) start = time.time() test_num=0
val_num=0
train_num=0 for i in list:
name=total_xml[i]
if i in trainval: #train and val set
if i in train:
directory="train"
train_num += 1
xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))
if(not os.path.exists(xml_path)):
os.mkdir(xml_path)
filePath=os.path.join(xmlfilepath,name)
newfile=os.path.join(saveBasePath,os.path.join(directory,name))
shutil.copyfile(filePath, newfile)
else:
directory="validation"
xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))
if(not os.path.exists(xml_path)):
os.mkdir(xml_path)
val_num += 1
filePath=os.path.join(xmlfilepath,name)
newfile=os.path.join(saveBasePath,os.path.join(directory,name))
shutil.copyfile(filePath, newfile) else:
directory="test"
xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory))
if(not os.path.exists(xml_path)):
os.mkdir(xml_path)
test_num += 1
filePath=os.path.join(xmlfilepath,name)
newfile=os.path.join(saveBasePath,os.path.join(directory,name))
shutil.copyfile(filePath, newfile) end = time.time()
seconds=end-start
print("train total : "+str(train_num))
print("validation total : "+str(val_num))
print("test total : "+str(test_num))
total_num=train_num+val_num+test_num
print("total number : "+str(total_num))
print( "Time taken : {0} seconds".format(seconds))

2. 把xml转换成csv文件,xml_to_csv.py 将生成的csv文件放在 object_detection/data/
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot() print(root.find('filename').text)
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text), #width
int(root.find('size')[1].text), #height
member[0].text,
int(member[4][0].text),
int(float(member[4][1].text)),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df def main():
for directory in ['train','test','validation']:
xml_path = os.path.join(os.getcwd(), 'Annotations/{}'.format(directory)) xml_df = xml_to_csv(xml_path)
# xml_df.to_csv('whsyxt.csv', index=None)
xml_df.to_csv('/home/z/work/models-master/research/object_detection/data/trafficlight_{}_labels.csv'.format(directory), index=None)
print('Successfully converted xml to csv.') main()

3. 生成tfrecord文件,generate_tfrecord.py
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 5 15:28:55 2019 @author: z
""" """
Usage:
# From tensorflow/models/
# Create train data:
python generate_tfrecord.py --csv_input=data/tv_vehicle_labels.csv --output_path=train.record
# Create test data:
python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record
""" import os
import io
import pandas as pd
import tensorflow as tf from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict os.chdir('/home/z/work/models-master/research/') flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS # TO-DO replace this with label map
def class_text_to_int(row_label):
# 你的所有类别
if row_label == 'red pedestrian':
return 1
else:
return None def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path):
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = [] for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
path = os.path.join(os.getcwd(), 'object_detection/images/voc/VOCdevkit/VOC2018/JPEGImages/')
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
num = 0
for group in grouped:
num += 1
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
if (num % 100 == 0): # 每完成100个转换,打印一次
print(num) writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path)) if __name__ == '__main__':
tf.app.run()
主要是在 row_label 这里要添加上你标注的类别,字符串 row_label 应于labelImg中标注的名称相同。同样 path 为图片的路径。
cd /home/z/work/models-master/research python generate_tfrecord.py --csv_input=object_detection/data/trafficlight_train_labels.csv --output_path=object_detection/data/
trafficlight_train.tfrecord
generate_tfrecord.py 需要在research目录下,也就是object_detection的上级目录,因为在脚本中使用了 object_detection.utils,如果在 object_detection 下执行命令会报错(No module named object_detection)。
其实这句命令很好理解,其实就是根据脚本中提供的图片路径,找到图片所在。至于是哪些图片?由csv文件来决定。csv文件主要就是记录图片的名称、类别、以及标记框的坐标。如下图所示:

类似的,我们可以输入如下命令,将验证集和测试集也转换为tfrecord格式。
python generate_tfrecord.py --csv_input=object_detection/data/trafficlight_validation_labels.csv --output_path=object_detection/data/
trafficlight_validation.tfrecord
python generate_tfrecord.py --csv_input=object_detection/data/trafficlight_test_labels.csv --output_path=object_detection/data/
trafficlight_test.tfrecord
四、训练
1. 在object_detection/data文件夹下创建标签分类的配置文件(label_map.txt),需要检测几种目标,将创建几个id,代码如下:
item {
id: 1 # id 从1开始编号
name: 'red pedestrian'
}
item {
id: 2
name: 'green pedestrian'
}
2. 配置管道配置文件,找到object_detection/samples/config/ssd_mobilenet_v1_coco.config,复制到data文件夹下。修改后的代码如下:
# SSD with Mobilenet v1 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured. model {
ssd {
num_classes: 17
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v1'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
} train_config: {
batch_size: 2
optimizer {
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.00001
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
} # Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 6000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
} train_input_reader: {
tf_record_input_reader {
input_path: "data/trafficlight_train.tfrecord"
}
label_map_path: "data/trafficlight_label_map.pbtxt"
} eval_config: {
num_examples: 8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
} eval_input_reader: {
tf_record_input_reader {
input_path: "data/trafficlight_validation.tfrecord"
}
label_map_path: "data/trafficlight_label_map.pbtxt"
shuffle: false
num_readers: 1
}
可以修改的有好几处,在代码中都标红了。建议还是将配置文件看一下。主要包括:标注的类别数目、batch_size(建议设置小一点)、学习率和退化率、训练的总步数、训练集和验证集的tfrecord的路径、label_map的路径
3. 开始训练
python train.py --logtostderr --train_dir=training/ --pipeline_config_path=data/ssd_mobilenet_v1_coco.config
参考地址:
https://www.cnblogs.com/White-xzx/p/9503203.html
tensorflow+ssd_mobilenet实现目标检测的训练的更多相关文章
- 第三十二节,使用谷歌Object Detection API进行目标检测、训练新的模型(使用VOC 2012数据集)
前面已经介绍了几种经典的目标检测算法,光学习理论不实践的效果并不大,这里我们使用谷歌的开源框架来实现目标检测.至于为什么不去自己实现呢?主要是因为自己实现比较麻烦,而且调参比较麻烦,我们直接利用别人的 ...
- gluoncv 目标检测,训练自己的数据集
https://gluon-cv.mxnet.io/build/examples_datasets/detection_custom.html 官方提供两种方案,一种是lst文件,一种是xml文件(v ...
- 【TensorFlow】基于ssd_mobilenet模型实现目标检测
最近工作的项目使用了TensorFlow中的目标检测技术,通过训练自己的样本集得到模型来识别游戏中的物体,在这里总结下. 本文介绍在Windows系统下,使用TensorFlow的object det ...
- 腾讯推出超强少样本目标检测算法,公开千类少样本检测训练集FSOD | CVPR 2020
论文提出了新的少样本目标检测算法,创新点包括Attention-RPN.多关系检测器以及对比训练策略,另外还构建了包含1000类的少样本检测数据集FSOD,在FSOD上训练得到的论文模型能够直接迁移到 ...
- 第三十四节,目标检测之谷歌Object Detection API源码解析
我们在第三十二节,使用谷歌Object Detection API进行目标检测.训练新的模型(使用VOC 2012数据集)那一节我们介绍了如何使用谷歌Object Detection API进行目标检 ...
- 目标检测之R-CNN系列
Object Detection,在给定的图像中,找到目标图像的位置,并标注出来. 或者是,图像中有那些目标,目标的位置在那.这个目标,是限定在数据集中包含的目标种类,比如数据集中有两种目标:狗,猫. ...
- 目标检测-yolo2
转载自:http://blog.csdn.net/qq_34784753/article/details/78825493 对于现在的最好的检测系统来说,yolo_v1 的问题主要出现在两方面,也就是 ...
- 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...
- tensorflow目标检测API之训练自己的数据集
1.训练文件的配置 将生成的csv和record文件都放在新建的mydata文件夹下,并打开object_detection文件夹下的data文件夹,复制一个后缀为.pbtxt的文件到mtdata文件 ...
随机推荐
- ReSharper 2017破解详细方法:
VS里面,打开ReSharper的注册窗口:ReSharper ——> Help ——> License Information... Use License Server,右侧加号,点击 ...
- redis一主二从加哨兵
redis版本:redis-3.0.6.tar.gz master:192.168.3.180 slave:192.168.3.184 (机器原因,两从都在这上面) 一.redis安装 cd /roo ...
- Java中反射机制详解
序言 在学习java基础时,由于学的不扎实,讲的实用性不强,就觉得没用,很多重要的知识就那样一笔带过了,像这个马上要讲的反射机制一样,当时学的时候就忽略了,到后来学习的知识中,很多东西动不动就用反射, ...
- /usr/bin/ld: .build_release/tools/alignment_tools.o: undefined reference to symbol 'omp_get_thread_num@@OMP_1.0'
问题:/usr/bin/ld: .build_release/tools/alignment_tools.o: undefined reference to symbol 'omp_get_threa ...
- BZOJ4269再见Xor——高斯消元解线性基
题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...
- 阶梯Nim问题
问题形式 有\(n\)个位置\(1...n\),每个位置上有\(a_i\)个石子.有两个人轮流操作.操作步骤是:挑选\(1...n\)中任一一个存在石子的位置\(i\),将至少1个石子移动至\(i-1 ...
- [Nmap] Regular script
out of date: TCP:nmap.exe -sC -sS -sV -p 1-65535 -A -v -v -oX filename.xml ip UDP:nmap.exe -sC -sU - ...
- SyntaxError: Unexpected token ' in JSON at position 2
js中字符串转json对象时报错: Uncaught SyntaxError: Unexpected token s in JSON at position 2 解决方法: js中获取jsp的返回值 ...
- Numpy系列(六)- 形状操作
Numpy 有一个强大之处在于可以很方便的修改生成的N维数组的形状. 更改数组形状 数组具有由沿着每个轴的元素数量给出的形状: a = np.floor(10*np.random.random((3, ...
- 第五节:从源码的角度理解各种Result(ActionResult、JsonResult、JavaScriptResult等)
一. 背景 提到MVC不得不说MVC中的各种Result,这些高度封装的xxxResult以及在xxxResult再度封装的xxx,大大提高了MVC框架的开发效率. 相信做过MVC开发的朋友都会用到过 ...
