在tensorflow里可以通过tf.device函数来指定每个运行的设备,可以是GPU也可以是CPU,比如CPU在tensorflow里的名称为/cpu:0,即便电脑里有多个CPU,tensorflow也并不会去区分它们,但是每台设备上的GPU名称却是不一样的,第N个GPU的名称为/gpu:n,第一个GPU名字为/gpu:0,第二个为/gpu:1,以此类推。

此外,tensorflow提供了快捷的方式查看运行每一个运算的设备,也就是在生成会话的时候设置log_device_placement参数来打印运行每个运算的设备

import tensorflow as tf

a = tf.constant([1.0,2.0,3.0],shape = [3], name = 'a')

b = tf.constant([1.0,2.0,3.0],shape = [3],name = 'b')

c = a+b

sess = tf.Session(config = tf.ConfigProto(log_device_placement = True))

print(sess(c))

在已经配置好的GPU环境的tensorflow中,tensorflow会自动优先将运算放置在GPU上

import tensorflow as tf

with tf.device('/cpu:0')

a = tf.constant([1.0,2.0,3.0],shape = [3], name = 'a')

b = tf.constant([1.0,2.0,3.0],shape = [3],name = 'b')

with tf.device('/gpu:1')

c = a+b

sess = tf.Session(config = tf.ConfigProto(log_device_placement = True))

print(sess(c))

这里对常量a,b的生成放在cpu上,加法操作在第二个GPU上.

Attention:

并不是所有的操作都可以在GPU 上运行,就拿tf.Variable()来说,tf.Variable(1,name = '1')这样就是错误的,因为在GPU上, tf.Variable()操作只支持实数型,例如tf.float16,float32,double,而在刚才的举例中是整形。为了避免这样的情况发生在生成会话之前可以加上这样的一条语句:allow_soft_placement,当这个参数设置为True的时候,就可以将GPU无法操作的语句转到cpu上运行

Tensorflow计算加速的更多相关文章

  1. 学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集

    TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型 ...

  2. TensorBoard计算加速

    目录 TensorBoard计算加速 0. 写在前面 1. TensorFlow使用GPU 2. 深度学习训练并行模式 3. 多GPU并行 4. 分布式TensorFlow 4.1 分布式Tensor ...

  3. TensorFlow XLA加速编译器

    TensorFlow XLA加速编译器 加速线性代数器(Accelerated linear algebra,XLA)是线性代数领域的专用编译器.根据 https://www.tensorflow.o ...

  4. 用NVIDIA Tensor Cores和TensorFlow 2加速医学图像分割

    用NVIDIA Tensor Cores和TensorFlow 2加速医学图像分割 Accelerating Medical Image Segmentation with NVIDIA Tensor ...

  5. Tensorflow计算模型 —— 计算图

    转载自:http://blog.csdn.net/john_xyz/article/details/69053626 Tensorflow是一个通过计算图的形式来表述计算的编程系统,计算图也叫数据流图 ...

  6. TensorFlow计算模型—计算图

    TensorFlow是一个通过计算图的形式来表述计算的编程系统.其中的Tnesor,代表它的数据结构,而Flow代表它的计算模型.TensorFlow中的每一个计算都是计算图上的一个节点,而节点之间的 ...

  7. 云知声 Atlas 超算平台: 基于 Fluid + Alluxio 的计算加速实践

    Fluid 是云原生基金会 CNCF 下的云原生数据编排和加速项目,由南京大学.阿里云及 Alluxio 社区联合发起并开源.本文主要介绍云知声 Atlas 超算平台基于 Fluid + Alluxi ...

  8. TensorFlow学习笔记(七)TesnorFlow实现计算加速

    目录: 一.TensorFlow使用GPU 二.深度学习训练与并行模式 三.多GPU并行 四.分布式TensorFlow 4.1分布式TensorFlow的原理 4.2分布式TensorFlow模型训 ...

  9. ubuntu16.04 源码安装Python3.7 (可以在此基础上安装Tensorflow) (确保Tensorflow计算框架与系统的彻底隔离)

    Python3.7 源码下载: https://www.python.org/downloads/release/python-370/ 解压源码: tar -zxvf Python-3.7.0.tg ...

随机推荐

  1. Python爬虫与一汽项目【三】爬取中国五矿集团采购平台

    网站地址:http://ec.mcc.com.cn/b2b/web/two/indexinfoAction.do?actionType=showMoreCgxx&xxposition=cgxx ...

  2. mask rcnn input数据理解

    Array.min() #无参,所有中的最小值 Array.min(0) # axis=0; 每列的最小值 Array.min(1) # axis=1:每行的最小值 字符串在输出时的对齐: S.lju ...

  3. 集成学习:以Bagging、Adaboosting为例

    集成学习是一大类模型融合策略和方法的统称,以下以bagging和boosting为例进行说明: 1.boosting boosting方法训练分类器采用串行的方式,每个弱分类器之间是相互依赖的,尤其后 ...

  4. 继承 派生 super()经典类 新式类

    '''1什么是继承? 继承一种新建类的方式,在python中支持一个儿子继承多个爹 新建的类称为子类的或者派生类 父类有可以称为基类或者超类 子类会‘遗传’父类的属性 2 为什么要用继承 减少代码冗余 ...

  5. JAVA随笔----浅谈lombok注解

    在Java开发中,注解可谓是帮了大忙.注解的使用帮助我们简化了代码,让代码更加简洁.今天就来谈谈常用的Lombok注解. lombok注解文档 lombok官方下载地址 先看一下lombok支持的一些 ...

  6. 不校验csrf

    from django.views.decorators.csrf import csrf_exempt@csrf_exemptdef a(request): pass

  7. pam密码策略

    PAM 的使用历史 PAM 是关注如何为服务验证用户的 API.在使用 PAM 之前,诸如 login(和 rlogin.telnet.rsh)之类的应用程序在 /etc/passwd 中查找用户名, ...

  8. Appium测试安卓apk遇到的问题及解决方法

    1.Showing error - “Returned value cannot be converted to WebElement: {ELEMENT=1}  解决方法:https://sqa.s ...

  9. linux设置静态IP及网卡选择

    linux中使用ifconfig命令查看网卡信息时显示为eth1,但是在network-scripts中只有ifcfg-eth0的配置文件,并且里面的NAME="eth0".   ...

  10. ZJOI2019游记

    Day-2 本蒟蒻有幸能去参加ZJOI2019,然而出发前就做好了爆0的准备. 坐了差不多6,7个小时的车,车上基本就是在颓知乎和打雀,然后就到了酒店. 招宝山酒店--本人住过的第一个四星级酒店,看上 ...